{"title":"洛伦兹型空间中的正规斯特里查兹估计值与对 $H^s$ 临界非均质双谐波 NLS 方程的应用","authors":"RoeSong Jang, JinMyong An, JinMyong Kim","doi":"arxiv-2409.06278","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Cauchy problem for the $H^s$-critical\ninhomogeneous biharmonic nonlinear Schr\\\"{o}dinger (IBNLS) equation \\[iu_{t}\\pm\n\\Delta^{2} u=\\lambda |x|^{-b}|u|^{\\sigma}u,~u(0)=u_{0} \\in H^{s} (\\mathbb\nR^{d}),\\] where $\\lambda\\in \\mathbb C$, $d\\ge 3$, $1\\le s<\\frac{d}{2}$,\n$0<b<\\min \\left\\{4,2+\\frac{d}{2}-s \\right\\}$ and $\\sigma=\\frac{8-2b}{d-2s}$.\nFirst, we study the properties of Lorentz-type spaces such as Besov-Lorentz\nspaces and Triebel-Lizorkin-Lorentz spaces. We then derive the regular\nStrichartz estimates for the corresponding linear equation in Lorentz-type\nspaces. Using these estimates, we establish the local well-posedness as well as\nthe small data global well-posedness and scattering in $H^s$ for the\n$H^s$-critical IBNLS equation under less regularity assumption on the nonlinear\nterm than in the recent work \\cite{AKR24}. This result also extends the ones of\n\\cite{SP23,SG24} by extending the validity of $d$, $b$ and $s$. Finally, we\ngive the well-posedness result in the homogeneous Sobolev spaces $\\dot{H}^s$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular Strichartz estimates in Lorentz-type spaces with application to the $H^s$-critical inhomogeneous biharmonic NLS equation\",\"authors\":\"RoeSong Jang, JinMyong An, JinMyong Kim\",\"doi\":\"arxiv-2409.06278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the Cauchy problem for the $H^s$-critical\\ninhomogeneous biharmonic nonlinear Schr\\\\\\\"{o}dinger (IBNLS) equation \\\\[iu_{t}\\\\pm\\n\\\\Delta^{2} u=\\\\lambda |x|^{-b}|u|^{\\\\sigma}u,~u(0)=u_{0} \\\\in H^{s} (\\\\mathbb\\nR^{d}),\\\\] where $\\\\lambda\\\\in \\\\mathbb C$, $d\\\\ge 3$, $1\\\\le s<\\\\frac{d}{2}$,\\n$0<b<\\\\min \\\\left\\\\{4,2+\\\\frac{d}{2}-s \\\\right\\\\}$ and $\\\\sigma=\\\\frac{8-2b}{d-2s}$.\\nFirst, we study the properties of Lorentz-type spaces such as Besov-Lorentz\\nspaces and Triebel-Lizorkin-Lorentz spaces. We then derive the regular\\nStrichartz estimates for the corresponding linear equation in Lorentz-type\\nspaces. Using these estimates, we establish the local well-posedness as well as\\nthe small data global well-posedness and scattering in $H^s$ for the\\n$H^s$-critical IBNLS equation under less regularity assumption on the nonlinear\\nterm than in the recent work \\\\cite{AKR24}. This result also extends the ones of\\n\\\\cite{SP23,SG24} by extending the validity of $d$, $b$ and $s$. Finally, we\\ngive the well-posedness result in the homogeneous Sobolev spaces $\\\\dot{H}^s$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regular Strichartz estimates in Lorentz-type spaces with application to the $H^s$-critical inhomogeneous biharmonic NLS equation
In this paper, we investigate the Cauchy problem for the $H^s$-critical
inhomogeneous biharmonic nonlinear Schr\"{o}dinger (IBNLS) equation \[iu_{t}\pm
\Delta^{2} u=\lambda |x|^{-b}|u|^{\sigma}u,~u(0)=u_{0} \in H^{s} (\mathbb
R^{d}),\] where $\lambda\in \mathbb C$, $d\ge 3$, $1\le s<\frac{d}{2}$,
$0