具有受控莫尔斯指数的帕莱-斯马尔序列的紧凑性,适用于刘维尔型函数

Francesco Malizia
{"title":"具有受控莫尔斯指数的帕莱-斯马尔序列的紧凑性,适用于刘维尔型函数","authors":"Francesco Malizia","doi":"arxiv-2409.06515","DOIUrl":null,"url":null,"abstract":"We prove that Palais-Smale sequences for Liouville type functionals on closed\nsurfaces are precompact whenever they satisfy a bound on their Morse index. As\na byproduct, we obtain a new proof of existence of solutions for Liouville type\nmean-field equations in a supercritical regime. Moreover, we also discuss an\nextension of this result to the case of singular Liouville equations.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness of Palais-Smale sequences with controlled Morse Index for a Liouville type functional\",\"authors\":\"Francesco Malizia\",\"doi\":\"arxiv-2409.06515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that Palais-Smale sequences for Liouville type functionals on closed\\nsurfaces are precompact whenever they satisfy a bound on their Morse index. As\\na byproduct, we obtain a new proof of existence of solutions for Liouville type\\nmean-field equations in a supercritical regime. Moreover, we also discuss an\\nextension of this result to the case of singular Liouville equations.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,只要闭合曲面上的Liouville型函数的Palais-Smale序列满足其莫尔斯指数的约束,它们就是前紧凑的。作为副产品,我们得到了一个新的证明,即在超临界状态下,Liouville 型均场方程的解的存在性。此外,我们还讨论了将这一结果推广到奇异Liouville方程的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness of Palais-Smale sequences with controlled Morse Index for a Liouville type functional
We prove that Palais-Smale sequences for Liouville type functionals on closed surfaces are precompact whenever they satisfy a bound on their Morse index. As a byproduct, we obtain a new proof of existence of solutions for Liouville type mean-field equations in a supercritical regime. Moreover, we also discuss an extension of this result to the case of singular Liouville equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信