具有自由传输粘度系数的二维不可压缩纳维-斯托克斯方程的全局时间内好拟性

Xian Liao, Rebekka Zimmermann
{"title":"具有自由传输粘度系数的二维不可压缩纳维-斯托克斯方程的全局时间内好拟性","authors":"Xian Liao, Rebekka Zimmermann","doi":"arxiv-2409.06517","DOIUrl":null,"url":null,"abstract":"We establish the global-in-time well-posedness of the two-dimensional\nincompressible Navier-Stokes equations with freely transported viscosity\ncoefficient, under a scaling-invariant smallness condition on the initial data.\nThe viscosity coefficient is allowed to exhibit large jumps across\n$W^{2,2+\\epsilon}$-interfaces. The viscous stress tensor $\\mu Su$ is carefully analyzed. Specifically,\n$(R^\\perp\\otimes R):(\\mu Su)$, where $R$ denotes the Riesz operator, defines a\n``good unknown'' that satisfies time-weighted $H^1$-energy estimates. Combined\nwith tangential regularity, this leads to the $W^{1,2+\\epsilon}$-regularity of\nanother ``good unknown'', $(\\bar{\\tau}\\otimes n):(\\mu Su)$, where $\\bar{\\tau}$\nand $n$ denote the unit tangential and normal vectors of the interfaces,\nrespectively. These results collectively provide a Lipschitz estimate for the\nvelocity field, even in the presence of significant discontinuities in $\\mu$. As applications, we investigate the well-posedness of the Boussinesq\nequations without heat conduction and the density-dependent incompressible\nNavier-Stokes equations in two spatial dimensions.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global-in-time well-posedness for the two-dimensional incompressible Navier-Stokes equations with freely transported viscosity coefficient\",\"authors\":\"Xian Liao, Rebekka Zimmermann\",\"doi\":\"arxiv-2409.06517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the global-in-time well-posedness of the two-dimensional\\nincompressible Navier-Stokes equations with freely transported viscosity\\ncoefficient, under a scaling-invariant smallness condition on the initial data.\\nThe viscosity coefficient is allowed to exhibit large jumps across\\n$W^{2,2+\\\\epsilon}$-interfaces. The viscous stress tensor $\\\\mu Su$ is carefully analyzed. Specifically,\\n$(R^\\\\perp\\\\otimes R):(\\\\mu Su)$, where $R$ denotes the Riesz operator, defines a\\n``good unknown'' that satisfies time-weighted $H^1$-energy estimates. Combined\\nwith tangential regularity, this leads to the $W^{1,2+\\\\epsilon}$-regularity of\\nanother ``good unknown'', $(\\\\bar{\\\\tau}\\\\otimes n):(\\\\mu Su)$, where $\\\\bar{\\\\tau}$\\nand $n$ denote the unit tangential and normal vectors of the interfaces,\\nrespectively. These results collectively provide a Lipschitz estimate for the\\nvelocity field, even in the presence of significant discontinuities in $\\\\mu$. As applications, we investigate the well-posedness of the Boussinesq\\nequations without heat conduction and the density-dependent incompressible\\nNavier-Stokes equations in two spatial dimensions.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了具有自由传输粘性系数的二维不可压缩纳维-斯托克斯(Navier-Stokes)方程的全局-时间好求解性,条件是初始数据的缩放不变小。对粘性应力张量 $\mu Su$ 进行了仔细分析。具体来说,$(R^\perp\otimes R):(\mu Su)$,其中$R$表示里兹算子,定义了一个满足时间加权$H^1$能量估计的 "好未知数"。结合切向正则性,这导致了另一个 "好未知数 "的$W^{1,2+\epsilon}$正则性,即$(\bar{\tau}\otimes n):(\mu Su)$,其中$\bar{\tau}$和$n$分别表示界面的单位切向量和法向量。这些结果共同为速度场提供了利普希兹估计,即使在 $\mu$ 存在显著不连续性的情况下也是如此。作为应用,我们研究了无热传导的 Boussinesq 方程和两个空间维度中与密度相关的不可压缩纳维尔-斯托克斯方程的好拟性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global-in-time well-posedness for the two-dimensional incompressible Navier-Stokes equations with freely transported viscosity coefficient
We establish the global-in-time well-posedness of the two-dimensional incompressible Navier-Stokes equations with freely transported viscosity coefficient, under a scaling-invariant smallness condition on the initial data. The viscosity coefficient is allowed to exhibit large jumps across $W^{2,2+\epsilon}$-interfaces. The viscous stress tensor $\mu Su$ is carefully analyzed. Specifically, $(R^\perp\otimes R):(\mu Su)$, where $R$ denotes the Riesz operator, defines a ``good unknown'' that satisfies time-weighted $H^1$-energy estimates. Combined with tangential regularity, this leads to the $W^{1,2+\epsilon}$-regularity of another ``good unknown'', $(\bar{\tau}\otimes n):(\mu Su)$, where $\bar{\tau}$ and $n$ denote the unit tangential and normal vectors of the interfaces, respectively. These results collectively provide a Lipschitz estimate for the velocity field, even in the presence of significant discontinuities in $\mu$. As applications, we investigate the well-posedness of the Boussinesq equations without heat conduction and the density-dependent incompressible Navier-Stokes equations in two spatial dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信