{"title":"在$\\mathbb{R}^n$, $n\\ge 3$中$Δu-u+|u|^{p-1}u= 0$的约束状态的唯一性","authors":"Moxun Tang","doi":"arxiv-2409.06915","DOIUrl":null,"url":null,"abstract":"We give a positive answer to a conjecture of Berestycki and Lions in 1983 on\nthe uniqueness of bound states to $\\Delta u +f(u)=0$ in $\\mathbb{R}^n$, $u\\in\nH^1(\\mathbb{R}^n)$, $u\\not\\equiv 0$, $n\\ge 3$. For the model nonlinearity\n$f(u)=-u+|u|^{p-1}u$, $1<p<(n+2)/(n-2)$, arisen from finding standing waves of\nKlein-Gordon equation or nonlinear Schr\\\"odinger equation, we show that, for\neach integer $k\\ge 1$, the problem has a unique solution $u=u(|x|)$, $x\\in\n\\mathbb{R}^n$, up to translation and reflection, that has precisely $k$ zeros\nfor $|x|>0$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of bound states to $Δu-u+|u|^{p-1}u= 0$ in $\\\\mathbb{R}^n$, $n\\\\ge 3$\",\"authors\":\"Moxun Tang\",\"doi\":\"arxiv-2409.06915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a positive answer to a conjecture of Berestycki and Lions in 1983 on\\nthe uniqueness of bound states to $\\\\Delta u +f(u)=0$ in $\\\\mathbb{R}^n$, $u\\\\in\\nH^1(\\\\mathbb{R}^n)$, $u\\\\not\\\\equiv 0$, $n\\\\ge 3$. For the model nonlinearity\\n$f(u)=-u+|u|^{p-1}u$, $1<p<(n+2)/(n-2)$, arisen from finding standing waves of\\nKlein-Gordon equation or nonlinear Schr\\\\\\\"odinger equation, we show that, for\\neach integer $k\\\\ge 1$, the problem has a unique solution $u=u(|x|)$, $x\\\\in\\n\\\\mathbb{R}^n$, up to translation and reflection, that has precisely $k$ zeros\\nfor $|x|>0$.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniqueness of bound states to $Δu-u+|u|^{p-1}u= 0$ in $\mathbb{R}^n$, $n\ge 3$
We give a positive answer to a conjecture of Berestycki and Lions in 1983 on
the uniqueness of bound states to $\Delta u +f(u)=0$ in $\mathbb{R}^n$, $u\in
H^1(\mathbb{R}^n)$, $u\not\equiv 0$, $n\ge 3$. For the model nonlinearity
$f(u)=-u+|u|^{p-1}u$, $1