稳定的环形涡流片

David Meyer, Christian Seis
{"title":"稳定的环形涡流片","authors":"David Meyer, Christian Seis","doi":"arxiv-2409.08220","DOIUrl":null,"url":null,"abstract":"In this work, we construct traveling wave solutions to the two-phase Euler\nequations, featuring a vortex sheet at the interface between the two phases.\nThe inner phase exhibits a uniform vorticity distribution and may represent a\nvacuum, forming what is known as a hollow vortex. These traveling waves take\nthe form of ring-shaped vortices with a small cross-sectional radius, referred\nto as thin rings. Our construction is based on the implicit function theorem,\nwhich also guarantees local uniqueness of the solutions. Additionally, we\nderive asymptotics for the speed of the ring, generalizing the well-known\nKelvin--Hicks formula to cases that include surface tension.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady Ring-Shaped Vortex Sheets\",\"authors\":\"David Meyer, Christian Seis\",\"doi\":\"arxiv-2409.08220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we construct traveling wave solutions to the two-phase Euler\\nequations, featuring a vortex sheet at the interface between the two phases.\\nThe inner phase exhibits a uniform vorticity distribution and may represent a\\nvacuum, forming what is known as a hollow vortex. These traveling waves take\\nthe form of ring-shaped vortices with a small cross-sectional radius, referred\\nto as thin rings. Our construction is based on the implicit function theorem,\\nwhich also guarantees local uniqueness of the solutions. Additionally, we\\nderive asymptotics for the speed of the ring, generalizing the well-known\\nKelvin--Hicks formula to cases that include surface tension.\",\"PeriodicalId\":501165,\"journal\":{\"name\":\"arXiv - MATH - Analysis of PDEs\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们构建了两相欧拉方程的行波解,其特点是两相界面处有一个涡片。内相呈现均匀的涡度分布,可能代表真空,形成所谓的空心涡。这些行波以横截面半径较小的环形涡旋形式出现,被称为薄环。我们的构造基于隐函数定理,该定理也保证了解的局部唯一性。此外,我们还将著名的开尔文-希克斯公式推广到包含表面张力的情况,从而获得了环速度的渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady Ring-Shaped Vortex Sheets
In this work, we construct traveling wave solutions to the two-phase Euler equations, featuring a vortex sheet at the interface between the two phases. The inner phase exhibits a uniform vorticity distribution and may represent a vacuum, forming what is known as a hollow vortex. These traveling waves take the form of ring-shaped vortices with a small cross-sectional radius, referred to as thin rings. Our construction is based on the implicit function theorem, which also guarantees local uniqueness of the solutions. Additionally, we derive asymptotics for the speed of the ring, generalizing the well-known Kelvin--Hicks formula to cases that include surface tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信