基于状态的维护优化方法与振荡不确定退化过程

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Shuyu Li, Meilin Wen, Tianpei Zu, Rui Kang
{"title":"基于状态的维护优化方法与振荡不确定退化过程","authors":"Shuyu Li, Meilin Wen, Tianpei Zu, Rui Kang","doi":"10.1002/qre.3648","DOIUrl":null,"url":null,"abstract":"Condition‐based maintenance (CBM) has gradually gained more attention, and the degradation process has been increasingly applied to maintenance optimization models. The insufficient data and the complex degradation process of the equipment conditions will contribute to epistemic uncertainty. Besides, the implementation of maintenance introduces oscillatory features into the equipment degradation process, deviating from a monotonically decreasing trend, complicating the optimization of CBM. In this article, to simultaneously address the problem of epistemic uncertainty and consider the influence of inspection and maintenance, we establish a new type of degradation model based on uncertainty theory to deal with epistemic uncertainty. Then an uncertain maintenance optimization model is proposed to give an optimal CBM strategy. Finally, a case study is provided to illustrate the proposed CBM optimization method.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A condition‐based maintenance optimization method with oscillating uncertain degradation process\",\"authors\":\"Shuyu Li, Meilin Wen, Tianpei Zu, Rui Kang\",\"doi\":\"10.1002/qre.3648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Condition‐based maintenance (CBM) has gradually gained more attention, and the degradation process has been increasingly applied to maintenance optimization models. The insufficient data and the complex degradation process of the equipment conditions will contribute to epistemic uncertainty. Besides, the implementation of maintenance introduces oscillatory features into the equipment degradation process, deviating from a monotonically decreasing trend, complicating the optimization of CBM. In this article, to simultaneously address the problem of epistemic uncertainty and consider the influence of inspection and maintenance, we establish a new type of degradation model based on uncertainty theory to deal with epistemic uncertainty. Then an uncertain maintenance optimization model is proposed to give an optimal CBM strategy. Finally, a case study is provided to illustrate the proposed CBM optimization method.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3648\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3648","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

基于状态的维护(CBM)逐渐受到越来越多的关注,退化过程也越来越多地被应用到维护优化模型中。设备状态数据的不足和复杂的退化过程将导致认识上的不确定性。此外,维护的实施会在设备退化过程中引入振荡特征,偏离单调递减的趋势,使 CBM 的优化变得复杂。本文针对认识不确定性问题,同时考虑检维修的影响,建立了一种基于不确定性理论的新型退化模型来处理认识不确定性问题。然后提出了一个不确定维护优化模型,以给出最佳的 CBM 策略。最后,通过案例研究说明了所提出的 CBM 优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A condition‐based maintenance optimization method with oscillating uncertain degradation process
Condition‐based maintenance (CBM) has gradually gained more attention, and the degradation process has been increasingly applied to maintenance optimization models. The insufficient data and the complex degradation process of the equipment conditions will contribute to epistemic uncertainty. Besides, the implementation of maintenance introduces oscillatory features into the equipment degradation process, deviating from a monotonically decreasing trend, complicating the optimization of CBM. In this article, to simultaneously address the problem of epistemic uncertainty and consider the influence of inspection and maintenance, we establish a new type of degradation model based on uncertainty theory to deal with epistemic uncertainty. Then an uncertain maintenance optimization model is proposed to give an optimal CBM strategy. Finally, a case study is provided to illustrate the proposed CBM optimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信