Carly E. Metcalfe, Bradley Jones, Douglas C. Montgomery
{"title":"针对 7 因子和 8 因子无混淆 16 次分数因子设计的别名信息模型选择 (AIMS)","authors":"Carly E. Metcalfe, Bradley Jones, Douglas C. Montgomery","doi":"10.1002/qre.3650","DOIUrl":null,"url":null,"abstract":"Nonregular fractional factorial designs are a preferable alternative to regular resolution IV designs because they avoid confounding 2‐factor interactions. As a result, nonregular designs can estimate and identify a few active 2‐factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard factor screening strategies can fail to identify all active effects. We report on a screening technique that takes advantage of the alias structure of these nonregular designs. This alias‐informed‐model‐selection (AIMS) technique has been used previously for a specific 6‐factor nonregular design. We show how the AIMS technique can be applied to 7‐ and 8‐factor nonregular designs, completing the exposition of this method for all 16‐run 2‐level designs that are viable alternatives to standard Resolution IV fractional factorial designs. We compare AIMS to three other standard analysis methods for nonregular designs, stepwise regression, the lasso, and the Dantzig selector. AIMS consistently outperforms these methods in identifying the set of active factors.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alias‐informed model selection (AIMS) for 7 and 8 factor no‐confounding 16‐run fractional factorial designs\",\"authors\":\"Carly E. Metcalfe, Bradley Jones, Douglas C. Montgomery\",\"doi\":\"10.1002/qre.3650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonregular fractional factorial designs are a preferable alternative to regular resolution IV designs because they avoid confounding 2‐factor interactions. As a result, nonregular designs can estimate and identify a few active 2‐factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard factor screening strategies can fail to identify all active effects. We report on a screening technique that takes advantage of the alias structure of these nonregular designs. This alias‐informed‐model‐selection (AIMS) technique has been used previously for a specific 6‐factor nonregular design. We show how the AIMS technique can be applied to 7‐ and 8‐factor nonregular designs, completing the exposition of this method for all 16‐run 2‐level designs that are viable alternatives to standard Resolution IV fractional factorial designs. We compare AIMS to three other standard analysis methods for nonregular designs, stepwise regression, the lasso, and the Dantzig selector. AIMS consistently outperforms these methods in identifying the set of active factors.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3650\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3650","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Alias‐informed model selection (AIMS) for 7 and 8 factor no‐confounding 16‐run fractional factorial designs
Nonregular fractional factorial designs are a preferable alternative to regular resolution IV designs because they avoid confounding 2‐factor interactions. As a result, nonregular designs can estimate and identify a few active 2‐factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard factor screening strategies can fail to identify all active effects. We report on a screening technique that takes advantage of the alias structure of these nonregular designs. This alias‐informed‐model‐selection (AIMS) technique has been used previously for a specific 6‐factor nonregular design. We show how the AIMS technique can be applied to 7‐ and 8‐factor nonregular designs, completing the exposition of this method for all 16‐run 2‐level designs that are viable alternatives to standard Resolution IV fractional factorial designs. We compare AIMS to three other standard analysis methods for nonregular designs, stepwise regression, the lasso, and the Dantzig selector. AIMS consistently outperforms these methods in identifying the set of active factors.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.