利用横向异质粗糙度对冲击波/湍流边界层相互作用进行被动控制

IF 2 3区 工程技术 Q3 MECHANICS
Wencan Wu, Luis Laguarda, Davide Modesti, Stefan Hickel
{"title":"利用横向异质粗糙度对冲击波/湍流边界层相互作用进行被动控制","authors":"Wencan Wu, Luis Laguarda, Davide Modesti, Stefan Hickel","doi":"10.1007/s10494-024-00580-0","DOIUrl":null,"url":null,"abstract":"<p>A novel passive flow-control method for shock-wave/turbulent boundary-layer interactions (STBLI) is investigated. The method relies on a structured roughness pattern constituted by streamwise-aligned ridges. Its effectiveness is assessed with wall-resolved large-eddy simulations of the interaction of a Mach 2 turbulent boundary layer flow with an oblique impinging shock with shock angle <span>\\(40^\\circ\\)</span>. The structured roughness pattern, which is fully resolved by a cut-cell based immersed boundary method, covers the entire computational domain. Results show that this rough surface induces large-scale secondary streamwise vortices, which energize the boundary layer by transporting high-speed fluid closer to the wall. A parametric study is performed to investigate the effect of the spacing between the ridges. This investigation is further substantiated through spectral analysis and sparsity-promoting dynamic mode decomposition. We find that ridges with small spacing effectively mitigate the low-frequency unsteadiness of STBLI and slightly reduce total-pressure loss.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"14 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness\",\"authors\":\"Wencan Wu, Luis Laguarda, Davide Modesti, Stefan Hickel\",\"doi\":\"10.1007/s10494-024-00580-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel passive flow-control method for shock-wave/turbulent boundary-layer interactions (STBLI) is investigated. The method relies on a structured roughness pattern constituted by streamwise-aligned ridges. Its effectiveness is assessed with wall-resolved large-eddy simulations of the interaction of a Mach 2 turbulent boundary layer flow with an oblique impinging shock with shock angle <span>\\\\(40^\\\\circ\\\\)</span>. The structured roughness pattern, which is fully resolved by a cut-cell based immersed boundary method, covers the entire computational domain. Results show that this rough surface induces large-scale secondary streamwise vortices, which energize the boundary layer by transporting high-speed fluid closer to the wall. A parametric study is performed to investigate the effect of the spacing between the ridges. This investigation is further substantiated through spectral analysis and sparsity-promoting dynamic mode decomposition. We find that ridges with small spacing effectively mitigate the low-frequency unsteadiness of STBLI and slightly reduce total-pressure loss.</p>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10494-024-00580-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-024-00580-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了冲击波/湍流边界层相互作用(STBLI)的一种新型被动流控制方法。该方法依赖于由流线对齐的脊构成的结构化粗糙度模式。通过壁面分辨大涡流模拟 2 马赫湍流边界层流与具有冲击角 \(40^\circ\)的斜向冲击的相互作用,评估了该方法的有效性。通过基于切割单元的沉浸边界法完全解析的结构粗糙度模式覆盖了整个计算域。结果表明,这种粗糙表面会诱发大规模的次级流向涡流,通过将高速流体输送到更靠近壁面的地方来激活边界层。对参数进行了研究,以探讨脊间距的影响。通过频谱分析和稀疏性促进动模分解进一步证实了这一研究。我们发现,间距较小的脊可有效缓解 STBLI 的低频不稳定性,并略微降低总压力损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness

Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness

A novel passive flow-control method for shock-wave/turbulent boundary-layer interactions (STBLI) is investigated. The method relies on a structured roughness pattern constituted by streamwise-aligned ridges. Its effectiveness is assessed with wall-resolved large-eddy simulations of the interaction of a Mach 2 turbulent boundary layer flow with an oblique impinging shock with shock angle \(40^\circ\). The structured roughness pattern, which is fully resolved by a cut-cell based immersed boundary method, covers the entire computational domain. Results show that this rough surface induces large-scale secondary streamwise vortices, which energize the boundary layer by transporting high-speed fluid closer to the wall. A parametric study is performed to investigate the effect of the spacing between the ridges. This investigation is further substantiated through spectral analysis and sparsity-promoting dynamic mode decomposition. We find that ridges with small spacing effectively mitigate the low-frequency unsteadiness of STBLI and slightly reduce total-pressure loss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信