{"title":"平衡用于监控视频暴力检测的联合学习的准确性和训练时间:神经网络架构研究","authors":"Quentin Pajon, Swan Serre, Hugo Wissocq, Léo Rabaud, Siba Haidar, Antoun Yaacoub","doi":"10.1007/s11390-024-3702-7","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an original investigation into the domain of violence detection in videos, introducing an innovative approach tailored to the unique challenges of a federated learning environment. The study encompasses a comprehensive exploration of machine learning techniques, leveraging spatio-temporal features extracted from benchmark video datasets. In a notable departure from conventional methodologies, we introduce a novel architecture, the “Diff Gated” network, designed to streamline preprocessing and training while simultaneously enhancing accuracy. Our exploration of advanced machine learning techniques, such as super-convergence and transfer learning, expands the horizons of federated learning, offering a broader range of practical applications. Moreover, our research introduces a method for seamlessly adapting centralized datasets to the federated learning context, bridging the gap between traditional machine learning and federated learning approaches. The outcome of this study is a remarkable advancement in the field of violence detection, with our federated learning model consistently outperforming state-of-the-art models, underscoring the transformative potential of our contributions. This work represents a significant step forward in the application of machine learning techniques to critical societal challenges.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"152 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures\",\"authors\":\"Quentin Pajon, Swan Serre, Hugo Wissocq, Léo Rabaud, Siba Haidar, Antoun Yaacoub\",\"doi\":\"10.1007/s11390-024-3702-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an original investigation into the domain of violence detection in videos, introducing an innovative approach tailored to the unique challenges of a federated learning environment. The study encompasses a comprehensive exploration of machine learning techniques, leveraging spatio-temporal features extracted from benchmark video datasets. In a notable departure from conventional methodologies, we introduce a novel architecture, the “Diff Gated” network, designed to streamline preprocessing and training while simultaneously enhancing accuracy. Our exploration of advanced machine learning techniques, such as super-convergence and transfer learning, expands the horizons of federated learning, offering a broader range of practical applications. Moreover, our research introduces a method for seamlessly adapting centralized datasets to the federated learning context, bridging the gap between traditional machine learning and federated learning approaches. The outcome of this study is a remarkable advancement in the field of violence detection, with our federated learning model consistently outperforming state-of-the-art models, underscoring the transformative potential of our contributions. This work represents a significant step forward in the application of machine learning techniques to critical societal challenges.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-024-3702-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-024-3702-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures
This paper presents an original investigation into the domain of violence detection in videos, introducing an innovative approach tailored to the unique challenges of a federated learning environment. The study encompasses a comprehensive exploration of machine learning techniques, leveraging spatio-temporal features extracted from benchmark video datasets. In a notable departure from conventional methodologies, we introduce a novel architecture, the “Diff Gated” network, designed to streamline preprocessing and training while simultaneously enhancing accuracy. Our exploration of advanced machine learning techniques, such as super-convergence and transfer learning, expands the horizons of federated learning, offering a broader range of practical applications. Moreover, our research introduces a method for seamlessly adapting centralized datasets to the federated learning context, bridging the gap between traditional machine learning and federated learning approaches. The outcome of this study is a remarkable advancement in the field of violence detection, with our federated learning model consistently outperforming state-of-the-art models, underscoring the transformative potential of our contributions. This work represents a significant step forward in the application of machine learning techniques to critical societal challenges.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas