HSSHG:用于视频质量检测的启发式语义约束时空异构图

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ruomei Wang;Yuanmao Luo;Fuwei Zhang;Mingyang Liu;Xiaonan Luo
{"title":"HSSHG:用于视频质量检测的启发式语义约束时空异构图","authors":"Ruomei Wang;Yuanmao Luo;Fuwei Zhang;Mingyang Liu;Xiaonan Luo","doi":"10.1109/TMM.2024.3443661","DOIUrl":null,"url":null,"abstract":"Video question answering is a challenging task that requires models to recognize visual information in videos and perform spatio-temporal reasoning. Current models increasingly focus on enabling objects spatio-temporal reasoning via graph neural networks. However, the existing graph network-based models still have deficiencies when constructing the spatio-temporal relationship between objects: (1) The lack of consideration of the spatio-temporal constraints between objects when defining the adjacency relationship; (2) The semantic correlation between objects is not fully considered when generating edge weights. These make the model lack representation of spatio-temporal interaction between objects, which directly affects the ability of object relation reasoning. To solve the above problems, this paper designs a heuristic semantics-constrained spatio-temporal heterogeneous graph, employing a semantic consistency-aware strategy to construct the spatio-temporal interaction between objects. The spatio-temporal relationship between objects is constrained by the object co-occurrence relationship and the object consistency. The plot summaries and object locations are used as heuristic semantic priors to constrain the weights of spatial and temporal edges. The spatio-temporal heterogeneity graph more accurately restores the spatio-temporal relationship between objects and strengthens the model's object spatio-temporal reasoning ability. Based on the spatio-temporal heterogeneous graph, this paper proposes Heuristic Semantics-constrained Spatio-temporal Heterogeneous Graph for VideoQA (HSSHG), which achieves state-of-the-art performance on benchmark MSVD-QA and FrameQA datasets, and demonstrates competitive results on benchmark MSRVTT-QA and ActivityNet-QA dataset. Extensive ablation experiments verify the effectiveness of each component in the network and the rationality of hyperparameter settings, and qualitative analysis verifies the object-level spatio-temporal reasoning ability of HSSHG.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11176-11190"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HSSHG: Heuristic Semantics-Constrained Spatio-Temporal Heterogeneous Graph for VideoQA\",\"authors\":\"Ruomei Wang;Yuanmao Luo;Fuwei Zhang;Mingyang Liu;Xiaonan Luo\",\"doi\":\"10.1109/TMM.2024.3443661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video question answering is a challenging task that requires models to recognize visual information in videos and perform spatio-temporal reasoning. Current models increasingly focus on enabling objects spatio-temporal reasoning via graph neural networks. However, the existing graph network-based models still have deficiencies when constructing the spatio-temporal relationship between objects: (1) The lack of consideration of the spatio-temporal constraints between objects when defining the adjacency relationship; (2) The semantic correlation between objects is not fully considered when generating edge weights. These make the model lack representation of spatio-temporal interaction between objects, which directly affects the ability of object relation reasoning. To solve the above problems, this paper designs a heuristic semantics-constrained spatio-temporal heterogeneous graph, employing a semantic consistency-aware strategy to construct the spatio-temporal interaction between objects. The spatio-temporal relationship between objects is constrained by the object co-occurrence relationship and the object consistency. The plot summaries and object locations are used as heuristic semantic priors to constrain the weights of spatial and temporal edges. The spatio-temporal heterogeneity graph more accurately restores the spatio-temporal relationship between objects and strengthens the model's object spatio-temporal reasoning ability. Based on the spatio-temporal heterogeneous graph, this paper proposes Heuristic Semantics-constrained Spatio-temporal Heterogeneous Graph for VideoQA (HSSHG), which achieves state-of-the-art performance on benchmark MSVD-QA and FrameQA datasets, and demonstrates competitive results on benchmark MSRVTT-QA and ActivityNet-QA dataset. Extensive ablation experiments verify the effectiveness of each component in the network and the rationality of hyperparameter settings, and qualitative analysis verifies the object-level spatio-temporal reasoning ability of HSSHG.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"11176-11190\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636771/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636771/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

视频问题解答是一项具有挑战性的任务,需要模型识别视频中的视觉信息并进行时空推理。目前的模型越来越注重通过图神经网络实现物体的时空推理。然而,现有的基于图网络的模型在构建对象间的时空关系时仍存在不足:(1)在定义邻接关系时没有考虑对象间的时空约束;(2)在生成边权重时没有充分考虑对象间的语义相关性。这些都使得模型缺乏对象间时空交互的表征,直接影响了对象关系推理的能力。为解决上述问题,本文设计了一种启发式语义约束时空异质图,采用语义一致性感知策略来构建对象间的时空交互关系。对象间的时空关系受对象共现关系和对象一致性的约束。情节摘要和对象位置被用作启发式语义先验,以限制空间和时间边缘的权重。时空异质性图更准确地还原了对象之间的时空关系,增强了模型的对象时空推理能力。基于时空异构图,本文提出了启发式语义约束时空异构图(Heuristic Semantics-constrained Spatio-temporal Heterogeneous Graph for VideoQA,HSSHG),它在基准MSVD-QA和FrameQA数据集上取得了最先进的性能,并在基准MSRVTT-QA和ActivityNet-QA数据集上展示了有竞争力的结果。广泛的消融实验验证了网络中每个组件的有效性和超参数设置的合理性,定性分析验证了 HSSHG 的对象级时空推理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HSSHG: Heuristic Semantics-Constrained Spatio-Temporal Heterogeneous Graph for VideoQA
Video question answering is a challenging task that requires models to recognize visual information in videos and perform spatio-temporal reasoning. Current models increasingly focus on enabling objects spatio-temporal reasoning via graph neural networks. However, the existing graph network-based models still have deficiencies when constructing the spatio-temporal relationship between objects: (1) The lack of consideration of the spatio-temporal constraints between objects when defining the adjacency relationship; (2) The semantic correlation between objects is not fully considered when generating edge weights. These make the model lack representation of spatio-temporal interaction between objects, which directly affects the ability of object relation reasoning. To solve the above problems, this paper designs a heuristic semantics-constrained spatio-temporal heterogeneous graph, employing a semantic consistency-aware strategy to construct the spatio-temporal interaction between objects. The spatio-temporal relationship between objects is constrained by the object co-occurrence relationship and the object consistency. The plot summaries and object locations are used as heuristic semantic priors to constrain the weights of spatial and temporal edges. The spatio-temporal heterogeneity graph more accurately restores the spatio-temporal relationship between objects and strengthens the model's object spatio-temporal reasoning ability. Based on the spatio-temporal heterogeneous graph, this paper proposes Heuristic Semantics-constrained Spatio-temporal Heterogeneous Graph for VideoQA (HSSHG), which achieves state-of-the-art performance on benchmark MSVD-QA and FrameQA datasets, and demonstrates competitive results on benchmark MSRVTT-QA and ActivityNet-QA dataset. Extensive ablation experiments verify the effectiveness of each component in the network and the rationality of hyperparameter settings, and qualitative analysis verifies the object-level spatio-temporal reasoning ability of HSSHG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信