金融科技算法能否减少银行贷款中的性别不平等?美国的一项定量研究

IF 1.4 4区 经济学 Q3 ECONOMICS
Ziheng Song, Shafiq Ur Rehman, Chun PingNg, Yuan Zhou, Patick Washington, Ricardo Verschueren
{"title":"金融科技算法能否减少银行贷款中的性别不平等?美国的一项定量研究","authors":"Ziheng Song, Shafiq Ur Rehman, Chun PingNg, Yuan Zhou, Patick Washington, Ricardo Verschueren","doi":"10.1080/15140326.2024.2324247","DOIUrl":null,"url":null,"abstract":"The potential of FinTech algorithms to decrease gender bias in credit decisions is limited by the impartiality of the data used to train them. If the data is partial or biased, the algorithmic deci...","PeriodicalId":51747,"journal":{"name":"Journal of Applied Economics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do FinTech algorithms reduce gender inequality in banks loans? A quantitative study from the USA\",\"authors\":\"Ziheng Song, Shafiq Ur Rehman, Chun PingNg, Yuan Zhou, Patick Washington, Ricardo Verschueren\",\"doi\":\"10.1080/15140326.2024.2324247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of FinTech algorithms to decrease gender bias in credit decisions is limited by the impartiality of the data used to train them. If the data is partial or biased, the algorithmic deci...\",\"PeriodicalId\":51747,\"journal\":{\"name\":\"Journal of Applied Economics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/15140326.2024.2324247\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/15140326.2024.2324247","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

金融科技算法在减少信贷决策中的性别偏见方面的潜力受限于用于训练算法的数据的公正性。如果数据不完整或有偏差,那么算法的决策就会受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do FinTech algorithms reduce gender inequality in banks loans? A quantitative study from the USA
The potential of FinTech algorithms to decrease gender bias in credit decisions is limited by the impartiality of the data used to train them. If the data is partial or biased, the algorithmic deci...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
57
审稿时长
40 weeks
期刊介绍: The Journal of Applied Economics publishes papers which make a significant and original contribution to applied issues in micro and macroeconomics. The primary criteria for selecting papers are quality and importance for the field. Papers based on a meaningful and well-motivated research problem that make a concrete contribution to empirical economics or applied theory, in any of its fields, are especially encouraged. The wide variety of topics that are covered in the Journal of Applied Economics include: -Industrial Organization -International Economics -Labour Economics -Finance -Money and Banking -Growth -Public Finance -Political Economy -Law and Economics -Environmental Economics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信