{"title":"安全、简单、多功能的羟基磷灰石纳米颗粒,可有效克服肿瘤的多药耐药性","authors":"Tao Shen, Hao Wang, Shuiquan Zhang, Xiulin Dong, Wen Zhang, Changsheng Liu, Jiangchao Qian","doi":"10.1016/j.apmt.2024.102394","DOIUrl":null,"url":null,"abstract":"Multidrug resistance (MDR) of cancer is the most common obstacle to chemotherapy. Many complex multifunctional nanoparticles have been developed for combination of two or more therapeutics to overcome MDR. Unlike these sophisticated nanoparticles, hydroxyapatite nanoparticles (HAPNs) were found to be able to inhibit cell proliferation of various human cancer cells. Herein, with different MDR cells and chemotherapeutic drugs, we tested whether HAPNs can be widely applied in fighting cancer drug resistance. Rod-shaped HAPNs were synthesized by the aqueous precipitation and then successfully loaded with paclitaxel (PTX) and doxorubicin (DOX) by physical adsorption to obtain pH-responsive drug-loaded nanoparticles, PHAPNs and DHAPNs, respectively. Plain HAPNs exhibited selective cytotoxicity to drug-resistant breast cancer cells MCF-7/ADR, lung cancer cells H69AR and A549/PTX, while spared normal human liver cells L-02. HAPN treatment led to an increase in the apoptosis ratio, a decrease in cell viability and a sustained increase in intracellular calcium ion level in MDR cells. Furthermore, HAPNs facilitated the delivery and accumulation of both drugs, thereby improving the DOX-induced DNA damage in H69AR cells, as well as the acetylation of α-tubulin and cell cycle arrest led by PTX in MCF-7/ADR and A549/PTX cells. Drug-loaded HAPNs greatly enhanced mitochondrial damage, inhibited ATP synthesis and efflux pump activity, and triggered both the intrinsic and extrinsic apoptosis induced by HAPNs or drugs alone. HAPNs acted synergistically with DOX and PTX, resulting in a >6-fold reduction in the IC compared with free drugs for these MDR cells. Notably, PHAPNs successfully suppressed the tumor growth in A549/PTX xenograft mice and exhibited excellent biocompatibility in vivo. These findings demonstrated that HAPNs may be widely utilized to reverse the resistance of various drug-resistant cells, providing a simple but practical approach to overcome MDR of cancer.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"10 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance\",\"authors\":\"Tao Shen, Hao Wang, Shuiquan Zhang, Xiulin Dong, Wen Zhang, Changsheng Liu, Jiangchao Qian\",\"doi\":\"10.1016/j.apmt.2024.102394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multidrug resistance (MDR) of cancer is the most common obstacle to chemotherapy. Many complex multifunctional nanoparticles have been developed for combination of two or more therapeutics to overcome MDR. Unlike these sophisticated nanoparticles, hydroxyapatite nanoparticles (HAPNs) were found to be able to inhibit cell proliferation of various human cancer cells. Herein, with different MDR cells and chemotherapeutic drugs, we tested whether HAPNs can be widely applied in fighting cancer drug resistance. Rod-shaped HAPNs were synthesized by the aqueous precipitation and then successfully loaded with paclitaxel (PTX) and doxorubicin (DOX) by physical adsorption to obtain pH-responsive drug-loaded nanoparticles, PHAPNs and DHAPNs, respectively. Plain HAPNs exhibited selective cytotoxicity to drug-resistant breast cancer cells MCF-7/ADR, lung cancer cells H69AR and A549/PTX, while spared normal human liver cells L-02. HAPN treatment led to an increase in the apoptosis ratio, a decrease in cell viability and a sustained increase in intracellular calcium ion level in MDR cells. Furthermore, HAPNs facilitated the delivery and accumulation of both drugs, thereby improving the DOX-induced DNA damage in H69AR cells, as well as the acetylation of α-tubulin and cell cycle arrest led by PTX in MCF-7/ADR and A549/PTX cells. Drug-loaded HAPNs greatly enhanced mitochondrial damage, inhibited ATP synthesis and efflux pump activity, and triggered both the intrinsic and extrinsic apoptosis induced by HAPNs or drugs alone. HAPNs acted synergistically with DOX and PTX, resulting in a >6-fold reduction in the IC compared with free drugs for these MDR cells. Notably, PHAPNs successfully suppressed the tumor growth in A549/PTX xenograft mice and exhibited excellent biocompatibility in vivo. These findings demonstrated that HAPNs may be widely utilized to reverse the resistance of various drug-resistant cells, providing a simple but practical approach to overcome MDR of cancer.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102394\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102394","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance
Multidrug resistance (MDR) of cancer is the most common obstacle to chemotherapy. Many complex multifunctional nanoparticles have been developed for combination of two or more therapeutics to overcome MDR. Unlike these sophisticated nanoparticles, hydroxyapatite nanoparticles (HAPNs) were found to be able to inhibit cell proliferation of various human cancer cells. Herein, with different MDR cells and chemotherapeutic drugs, we tested whether HAPNs can be widely applied in fighting cancer drug resistance. Rod-shaped HAPNs were synthesized by the aqueous precipitation and then successfully loaded with paclitaxel (PTX) and doxorubicin (DOX) by physical adsorption to obtain pH-responsive drug-loaded nanoparticles, PHAPNs and DHAPNs, respectively. Plain HAPNs exhibited selective cytotoxicity to drug-resistant breast cancer cells MCF-7/ADR, lung cancer cells H69AR and A549/PTX, while spared normal human liver cells L-02. HAPN treatment led to an increase in the apoptosis ratio, a decrease in cell viability and a sustained increase in intracellular calcium ion level in MDR cells. Furthermore, HAPNs facilitated the delivery and accumulation of both drugs, thereby improving the DOX-induced DNA damage in H69AR cells, as well as the acetylation of α-tubulin and cell cycle arrest led by PTX in MCF-7/ADR and A549/PTX cells. Drug-loaded HAPNs greatly enhanced mitochondrial damage, inhibited ATP synthesis and efflux pump activity, and triggered both the intrinsic and extrinsic apoptosis induced by HAPNs or drugs alone. HAPNs acted synergistically with DOX and PTX, resulting in a >6-fold reduction in the IC compared with free drugs for these MDR cells. Notably, PHAPNs successfully suppressed the tumor growth in A549/PTX xenograft mice and exhibited excellent biocompatibility in vivo. These findings demonstrated that HAPNs may be widely utilized to reverse the resistance of various drug-resistant cells, providing a simple but practical approach to overcome MDR of cancer.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.