Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson
{"title":"用于保护和阻尼的局部可调力学弹性剪切加固复合材料","authors":"Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson","doi":"10.1016/j.apmt.2024.102396","DOIUrl":null,"url":null,"abstract":"Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"108 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic shear-stiffening composites with locally tunable mechanics for protection and damping\",\"authors\":\"Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson\",\"doi\":\"10.1016/j.apmt.2024.102396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102396\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102396","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Elastic shear-stiffening composites with locally tunable mechanics for protection and damping
Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.