用于保护和阻尼的局部可调力学弹性剪切加固复合材料

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson
{"title":"用于保护和阻尼的局部可调力学弹性剪切加固复合材料","authors":"Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson","doi":"10.1016/j.apmt.2024.102396","DOIUrl":null,"url":null,"abstract":"Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"108 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic shear-stiffening composites with locally tunable mechanics for protection and damping\",\"authors\":\"Miaomiao Zou, Hongye Guo, Qicheng Zhang, Huijiang Wang, Zehao Ji, Christos Margadji, Kerr Samson, Andi Kuswoyo, Fabrizio Scarpa, Mohand Saed, Sebastian W. Pattinson\",\"doi\":\"10.1016/j.apmt.2024.102396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102396\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102396","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

剪切增韧凝胶是一种柔性材料,其模量在受到快速冲击时会显著增加。它们可应用于保护装置和其他设备,但通常受到加工困难和形状保持不佳的限制。在这里,我们展示了一种简单且可扩展的工艺,用于制造具有局部可控和复杂几何形状的弹性剪切加固复合材料。我们构建的弹性剪切加固复合材料兼具机械完整性、剪切加固行为和弹性。剪切加固凝胶被三维打印成细纤维,间隙中填充聚二甲基硅氧烷弹性体以固定凝胶。这种复合材料具有很强的抗冲击性和形状恢复能力,这可能是由于复合材料界面上的协同能量吸收和耗散以及弹性体结构。还可以通过调整填充比例对复合材料力学进行局部调节,有选择性地改变部件刚度,从而帮助运动,提高佩戴舒适度。同样,在机器人演示中,复合材料铰链也表现出出色的阻尼效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic shear-stiffening composites with locally tunable mechanics for protection and damping
Shear-stiffening gels are flexible materials whose modulus is significantly increased upon rapid impact. They have applications in protective and other devices but are generally limited by difficult processability and poor shape retention. Here we demonstrate a simple and scalable process for making elastic shear-stiffening composites with locally controllable and complex geometries. We construct elastic shear-stiffening composites combining mechanical integrity with shear-stiffening behaviour and elasticity. Shear-stiffening gels were 3D-printed as thin fibres with interstitial spaces filled with polydimethylsiloxane elastomer to hold the gels in place. The composite exhibits strong impact-resistance and shape recovery, which may be due to synergistic energy absorption and dissipation at the composite interface, as well as to the elastomer architecture. Composite mechanics can also be locally modulated by tuning the infill percentages to selectively vary part stiffness and therefore aid motion and wearer comfort. Similarly, a composite hinge exhibits excellent damping, shown in a robotic demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Materials Today
Applied Materials Today Materials Science-General Materials Science
CiteScore
14.90
自引率
3.60%
发文量
393
审稿时长
26 days
期刊介绍: Journal Name: Applied Materials Today Focus: Multi-disciplinary, rapid-publication journal Focused on cutting-edge applications of novel materials Overview: New materials discoveries have led to exciting fundamental breakthroughs. Materials research is now moving towards the translation of these scientific properties and principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信