Shubhadeep Sadhukhan, Cristina Martinez-Torres, Samo Penic, Carsten Beta, Ales Iglic, Nir S. gov
{"title":"模拟叶状薄片驱动的细胞如何保持持续迁移并与外部障碍相互作用","authors":"Shubhadeep Sadhukhan, Cristina Martinez-Torres, Samo Penic, Carsten Beta, Ales Iglic, Nir S. gov","doi":"10.1101/2024.09.06.611667","DOIUrl":null,"url":null,"abstract":"Cell motility is fundamental to many biological processes, and cells exhibit a variety of migration patterns. Many motile cell types follow a universal law that connects their speed and persistency, a property that can originate from the intracellular transport of polarity cues due to the global actin retrograde flow. This mechanism was termed the ``Universal Coupling between cell Speed and Persistency\"(UCSP). Here we implemented a simplified version of the UCSP mechanism in a coarse-grained ``minimal-cell\" model, which is composed of a three-dimensional vesicle that contains curved active proteins. This model spontaneously forms a lamellipodia-like motile cell shape, which is however sensitive and can depolarize into a non-motile form due to random fluctuations or when interacting with external obstacles. The UCSP implementation introduces long-range inhibition, which stabilizes the motile phenotype. This allows our model to describe the robust polarity observed in cells and explain a large variety of cellular dynamics, such as the relation between cell speed and aspect ratio, cell-barrier scattering, and cellular oscillations in different types of geometric confinements.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers\",\"authors\":\"Shubhadeep Sadhukhan, Cristina Martinez-Torres, Samo Penic, Carsten Beta, Ales Iglic, Nir S. gov\",\"doi\":\"10.1101/2024.09.06.611667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell motility is fundamental to many biological processes, and cells exhibit a variety of migration patterns. Many motile cell types follow a universal law that connects their speed and persistency, a property that can originate from the intracellular transport of polarity cues due to the global actin retrograde flow. This mechanism was termed the ``Universal Coupling between cell Speed and Persistency\\\"(UCSP). Here we implemented a simplified version of the UCSP mechanism in a coarse-grained ``minimal-cell\\\" model, which is composed of a three-dimensional vesicle that contains curved active proteins. This model spontaneously forms a lamellipodia-like motile cell shape, which is however sensitive and can depolarize into a non-motile form due to random fluctuations or when interacting with external obstacles. The UCSP implementation introduces long-range inhibition, which stabilizes the motile phenotype. This allows our model to describe the robust polarity observed in cells and explain a large variety of cellular dynamics, such as the relation between cell speed and aspect ratio, cell-barrier scattering, and cellular oscillations in different types of geometric confinements.\",\"PeriodicalId\":501048,\"journal\":{\"name\":\"bioRxiv - Biophysics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers
Cell motility is fundamental to many biological processes, and cells exhibit a variety of migration patterns. Many motile cell types follow a universal law that connects their speed and persistency, a property that can originate from the intracellular transport of polarity cues due to the global actin retrograde flow. This mechanism was termed the ``Universal Coupling between cell Speed and Persistency"(UCSP). Here we implemented a simplified version of the UCSP mechanism in a coarse-grained ``minimal-cell" model, which is composed of a three-dimensional vesicle that contains curved active proteins. This model spontaneously forms a lamellipodia-like motile cell shape, which is however sensitive and can depolarize into a non-motile form due to random fluctuations or when interacting with external obstacles. The UCSP implementation introduces long-range inhibition, which stabilizes the motile phenotype. This allows our model to describe the robust polarity observed in cells and explain a large variety of cellular dynamics, such as the relation between cell speed and aspect ratio, cell-barrier scattering, and cellular oscillations in different types of geometric confinements.