具有质量扩散的热弹性布雷斯系统的吸引子

Haiyan Li, Victor R. Cabanillas, Baowei Feng
{"title":"具有质量扩散的热弹性布雷斯系统的吸引子","authors":"Haiyan Li, Victor R. Cabanillas, Baowei Feng","doi":"10.1002/zamm.202300502","DOIUrl":null,"url":null,"abstract":"This paper concerns the long‐time dynamics of a thermoelastic Bresse system with mass diffusion. We prove the existence of a global attractor by showing that the system is gradient and asymptotically smooth. In addition, the attractor is characterized as an unstable manifold of the set of stationary solutions. The quasi‐stability of the system and the finite fractal dimension of the global attractor are established by a stabilizability inequality. Finally, we prove the upper semicontinuity of the global attractor regarding the parameter in a dense residual set.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attractors of a thermoelastic Bresse system with mass diffusion\",\"authors\":\"Haiyan Li, Victor R. Cabanillas, Baowei Feng\",\"doi\":\"10.1002/zamm.202300502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the long‐time dynamics of a thermoelastic Bresse system with mass diffusion. We prove the existence of a global attractor by showing that the system is gradient and asymptotically smooth. In addition, the attractor is characterized as an unstable manifold of the set of stationary solutions. The quasi‐stability of the system and the finite fractal dimension of the global attractor are established by a stabilizability inequality. Finally, we prove the upper semicontinuity of the global attractor regarding the parameter in a dense residual set.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一个具有质量扩散的热弹性布雷斯系统的长期动力学。通过证明该系统具有梯度和渐近平稳性,我们证明了全局吸引子的存在。此外,吸引子的特征是静态解集的不稳定流形。系统的准稳定性和全局吸引子的有限分形维度是通过稳定不等式确定的。最后,我们证明了全局吸引子在密集残余集参数方面的上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractors of a thermoelastic Bresse system with mass diffusion
This paper concerns the long‐time dynamics of a thermoelastic Bresse system with mass diffusion. We prove the existence of a global attractor by showing that the system is gradient and asymptotically smooth. In addition, the attractor is characterized as an unstable manifold of the set of stationary solutions. The quasi‐stability of the system and the finite fractal dimension of the global attractor are established by a stabilizability inequality. Finally, we prove the upper semicontinuity of the global attractor regarding the parameter in a dense residual set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信