带磁场的约翰逊-塞加尔曼蠕动流中的熵生成和活化能

Hina Zahir, Javaria Akram, Mustafa Bayram, Mehnaz Shakeel, Rabbia Fatima, Shahram Rezapour, Mustafa Inc
{"title":"带磁场的约翰逊-塞加尔曼蠕动流中的熵生成和活化能","authors":"Hina Zahir, Javaria Akram, Mustafa Bayram, Mehnaz Shakeel, Rabbia Fatima, Shahram Rezapour, Mustafa Inc","doi":"10.1002/zamm.202300989","DOIUrl":null,"url":null,"abstract":"This study examines entropy generation in the peristaltic flow of Johnson–Segalman fluid through a curved channel, considering the effects of Hall and ion slip due to an externally applied magnetic field and activation energy. The fluid dynamics are modeled using a highly nonlinear mathematical framework, which is non‐dimensionalized and simplified with a lubrication approach. Numerical solutions are obtained using the shooting technique to analyze fluid flow properties. The results, presented graphically, provide a comprehensive understanding of the interactions between the non‐Newtonian characteristics of the Johnson–Segalman fluid, entropy generation, and activation energy effects. The study finds that increasing the Hall parameter enhances entropy generation. Higher activation energy increases the rate of chemical reactions and by‐products, raising system randomness. Additionally, reducing the channel curvature or increasing the curvature parameter elevates the system's entropy. These insights are valuable for biomedical and industrial applications.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy generation in Johnson–Segalman peristaltic flow with magnetic field and activation energy\",\"authors\":\"Hina Zahir, Javaria Akram, Mustafa Bayram, Mehnaz Shakeel, Rabbia Fatima, Shahram Rezapour, Mustafa Inc\",\"doi\":\"10.1002/zamm.202300989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines entropy generation in the peristaltic flow of Johnson–Segalman fluid through a curved channel, considering the effects of Hall and ion slip due to an externally applied magnetic field and activation energy. The fluid dynamics are modeled using a highly nonlinear mathematical framework, which is non‐dimensionalized and simplified with a lubrication approach. Numerical solutions are obtained using the shooting technique to analyze fluid flow properties. The results, presented graphically, provide a comprehensive understanding of the interactions between the non‐Newtonian characteristics of the Johnson–Segalman fluid, entropy generation, and activation energy effects. The study finds that increasing the Hall parameter enhances entropy generation. Higher activation energy increases the rate of chemical reactions and by‐products, raising system randomness. Additionally, reducing the channel curvature or increasing the curvature parameter elevates the system's entropy. These insights are valuable for biomedical and industrial applications.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了约翰逊-塞格曼流体在通过弯曲通道的蠕动过程中产生的熵,考虑了外部施加磁场和活化能导致的霍尔效应和离子滑移效应。流体动力学建模采用高度非线性数学框架,该框架采用润滑方法进行了非尺寸化和简化。利用射流技术获得了数值解,以分析流体流动特性。研究结果以图表形式呈现,让人全面了解约翰逊-塞格曼流体的非牛顿特性、熵的产生和活化能效应之间的相互作用。研究发现,霍尔参数的增加会促进熵的生成。活化能越高,化学反应和副产物的速度越快,系统随机性越大。此外,降低通道曲率或增加曲率参数也会提高系统的熵。这些见解对于生物医学和工业应用非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy generation in Johnson–Segalman peristaltic flow with magnetic field and activation energy
This study examines entropy generation in the peristaltic flow of Johnson–Segalman fluid through a curved channel, considering the effects of Hall and ion slip due to an externally applied magnetic field and activation energy. The fluid dynamics are modeled using a highly nonlinear mathematical framework, which is non‐dimensionalized and simplified with a lubrication approach. Numerical solutions are obtained using the shooting technique to analyze fluid flow properties. The results, presented graphically, provide a comprehensive understanding of the interactions between the non‐Newtonian characteristics of the Johnson–Segalman fluid, entropy generation, and activation energy effects. The study finds that increasing the Hall parameter enhances entropy generation. Higher activation energy increases the rate of chemical reactions and by‐products, raising system randomness. Additionally, reducing the channel curvature or increasing the curvature parameter elevates the system's entropy. These insights are valuable for biomedical and industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信