{"title":"威廉姆森混合纳米流体通过非对称锥形通道的电渗调节蠕动传输中的热辐射效应","authors":"Santosh Chaudhary, Kiran Kunwar Chouhan","doi":"10.1002/zamm.202301081","DOIUrl":null,"url":null,"abstract":"Electroosmosis effects in a peristaltic transport of nanofluids are significant for developing the biomimetic pumping structure at a microscopic extent in physiological medications, for instance, ocular drug delivery systems. The present article addresses the numerical assessment of a peristaltically driven electro‐osmotic flow of a Williamson hybrid nanofluid. The flow is intended to be two‐dimensional, incompressible, unsteady, and subjected to an asymmetric tapered micro‐channel. The characteristics of hybrid nanofluid, which consists of silver (Ag) and copper (Cu) as nanoparticles with base fluid‐blood, are explored in a relative manner with regular nanofluid Ag‐blood. Further, the study includes the impact of linear thermal radiation, energy dissipation through viscosity and resistance phenomena with an externally applied consistent magnetic field. The mathematical model is simplified using dimensionless similarity transformations and numerically solved via MATLAB software. Variations in momentum, thermal energy, and entropy generation against various emerging physical parameters are deliberated through graphical results. Longitudinal velocity towards the center line and heat transfer rate is also analyzed through numerical data illustrated in table form. This study introduces a novel mathematical model for the peristaltically driven electroosmosis flow of Ag‐Cu/blood hybrid nanofluid in a tapered asymmetric microchannel, incorporating external electric and magnetic field effects.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal radiation effect in electroosmosis regulated peristalsis transport of Williamson hybrid nanofluid via an asymmetric tapered channel\",\"authors\":\"Santosh Chaudhary, Kiran Kunwar Chouhan\",\"doi\":\"10.1002/zamm.202301081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroosmosis effects in a peristaltic transport of nanofluids are significant for developing the biomimetic pumping structure at a microscopic extent in physiological medications, for instance, ocular drug delivery systems. The present article addresses the numerical assessment of a peristaltically driven electro‐osmotic flow of a Williamson hybrid nanofluid. The flow is intended to be two‐dimensional, incompressible, unsteady, and subjected to an asymmetric tapered micro‐channel. The characteristics of hybrid nanofluid, which consists of silver (Ag) and copper (Cu) as nanoparticles with base fluid‐blood, are explored in a relative manner with regular nanofluid Ag‐blood. Further, the study includes the impact of linear thermal radiation, energy dissipation through viscosity and resistance phenomena with an externally applied consistent magnetic field. The mathematical model is simplified using dimensionless similarity transformations and numerically solved via MATLAB software. Variations in momentum, thermal energy, and entropy generation against various emerging physical parameters are deliberated through graphical results. Longitudinal velocity towards the center line and heat transfer rate is also analyzed through numerical data illustrated in table form. This study introduces a novel mathematical model for the peristaltically driven electroosmosis flow of Ag‐Cu/blood hybrid nanofluid in a tapered asymmetric microchannel, incorporating external electric and magnetic field effects.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202301081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202301081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal radiation effect in electroosmosis regulated peristalsis transport of Williamson hybrid nanofluid via an asymmetric tapered channel
Electroosmosis effects in a peristaltic transport of nanofluids are significant for developing the biomimetic pumping structure at a microscopic extent in physiological medications, for instance, ocular drug delivery systems. The present article addresses the numerical assessment of a peristaltically driven electro‐osmotic flow of a Williamson hybrid nanofluid. The flow is intended to be two‐dimensional, incompressible, unsteady, and subjected to an asymmetric tapered micro‐channel. The characteristics of hybrid nanofluid, which consists of silver (Ag) and copper (Cu) as nanoparticles with base fluid‐blood, are explored in a relative manner with regular nanofluid Ag‐blood. Further, the study includes the impact of linear thermal radiation, energy dissipation through viscosity and resistance phenomena with an externally applied consistent magnetic field. The mathematical model is simplified using dimensionless similarity transformations and numerically solved via MATLAB software. Variations in momentum, thermal energy, and entropy generation against various emerging physical parameters are deliberated through graphical results. Longitudinal velocity towards the center line and heat transfer rate is also analyzed through numerical data illustrated in table form. This study introduces a novel mathematical model for the peristaltically driven electroosmosis flow of Ag‐Cu/blood hybrid nanofluid in a tapered asymmetric microchannel, incorporating external electric and magnetic field effects.