一些具有单调性的演化方程的埃伯林几乎周期解

IF 2.6 3区 数学
El Hadi Ait Dads, Brahim Es-Sebbar, Samir Fatajou, Zakaria Zizi
{"title":"一些具有单调性的演化方程的埃伯林几乎周期解","authors":"El Hadi Ait Dads, Brahim Es-Sebbar, Samir Fatajou, Zakaria Zizi","doi":"10.1007/s40314-024-02875-4","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the existence of Eberlein weakly almost periodic solutions for differential equations of the form <span>\\(u'=Au+f(t)\\)</span> and <span>\\(u'=A(t)u+f(t)\\)</span>. In the first scenario, when <i>A</i> generates a strongly asymptotically semigroup, we establish the existence of Eberlein-weakly almost periodic solutions, thereby extending and improving a previous result in Zaidman(Ann Univ Ferrara 14(1): 29–34, 1969). In the second case, we consider a more general situation where <i>A</i>(<i>t</i>) is a (possibly nonlinear) operator satisfying a monotony condition. Unlike most existing works in the literature, our approach does not rely on tools of exponential dichotomy and Lipschitz nonlinearity. Lastly, we illustrate the practical relevance of our findings by presenting real-world models, including a hematopoiesis model, that exemplify the key findings. A numerical simulation is also provided.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eberlein almost periodic solutions for some evolution equations with monotonicity\",\"authors\":\"El Hadi Ait Dads, Brahim Es-Sebbar, Samir Fatajou, Zakaria Zizi\",\"doi\":\"10.1007/s40314-024-02875-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the existence of Eberlein weakly almost periodic solutions for differential equations of the form <span>\\\\(u'=Au+f(t)\\\\)</span> and <span>\\\\(u'=A(t)u+f(t)\\\\)</span>. In the first scenario, when <i>A</i> generates a strongly asymptotically semigroup, we establish the existence of Eberlein-weakly almost periodic solutions, thereby extending and improving a previous result in Zaidman(Ann Univ Ferrara 14(1): 29–34, 1969). In the second case, we consider a more general situation where <i>A</i>(<i>t</i>) is a (possibly nonlinear) operator satisfying a monotony condition. Unlike most existing works in the literature, our approach does not rely on tools of exponential dichotomy and Lipschitz nonlinearity. Lastly, we illustrate the practical relevance of our findings by presenting real-world models, including a hematopoiesis model, that exemplify the key findings. A numerical simulation is also provided.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02875-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02875-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了形式为\(u'=Au+f(t)\)和\(u'=A(t)u+f(t)\)的微分方程的埃伯林弱几乎周期解的存在性。在第一种情况下,当 A 产生一个强渐近半群时,我们建立了埃伯林弱近周期解的存在性,从而扩展并改进了 Zaidman 以前的一个结果(Ann Univ Ferrara 14(1):29-34, 1969).在第二种情况下,我们考虑了一种更普遍的情况,即 A(t) 是一个满足单调性条件的(可能是非线性)算子。与大多数现有文献不同,我们的方法并不依赖指数二分法和 Lipschitz 非线性工具。最后,我们通过展示现实世界的模型(包括一个造血模型)来说明我们的研究成果的实际意义,这些模型是关键研究成果的例证。我们还提供了一个数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eberlein almost periodic solutions for some evolution equations with monotonicity

Eberlein almost periodic solutions for some evolution equations with monotonicity

This paper investigates the existence of Eberlein weakly almost periodic solutions for differential equations of the form \(u'=Au+f(t)\) and \(u'=A(t)u+f(t)\). In the first scenario, when A generates a strongly asymptotically semigroup, we establish the existence of Eberlein-weakly almost periodic solutions, thereby extending and improving a previous result in Zaidman(Ann Univ Ferrara 14(1): 29–34, 1969). In the second case, we consider a more general situation where A(t) is a (possibly nonlinear) operator satisfying a monotony condition. Unlike most existing works in the literature, our approach does not rely on tools of exponential dichotomy and Lipschitz nonlinearity. Lastly, we illustrate the practical relevance of our findings by presenting real-world models, including a hematopoiesis model, that exemplify the key findings. A numerical simulation is also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信