Linqiang Xu, Yue Hu, Lianqiang Xu, Lin Xu, Qiuhui Li, Aili Wang, Chit Siong Lau, Jing Lu, Yee Sin Ang
{"title":"面向未来 CMOS 技术节点的 1 纳米以下厚度氧化物半导体的 Ab Initio 器件驱动筛选","authors":"Linqiang Xu, Yue Hu, Lianqiang Xu, Lin Xu, Qiuhui Li, Aili Wang, Chit Siong Lau, Jing Lu, Yee Sin Ang","doi":"arxiv-2409.08096","DOIUrl":null,"url":null,"abstract":"Ultrathin oxide semiconductors with sub-1-nm thickness are promising building\nblocks for ultrascaled field-effect transistor (FET) applications due to their\nresilience against short-channel effects, high air stability, and potential for\nlow-energy device operation. However, the n-type dominance of ultrathin oxide\nFET has hindered their integration into complementary metal-oxide-semiconductor\n(CMOS) technology, which requires both n-and p-type devices. Here we develop an\nab initio device-driven computational screening workflow to identify sub-1-nm\nthickness oxide semiconductors for sub-5-nm FET applications. We demonstrate\nthat ultrathin CaO2, CaO, and SrO are compatible with p-type device operations\nunder both high-performance (HP) and low-power (LP) requirements specified by\nthe International Technology Roadmap of Semiconductors (ITRS), thereby\nexpanding the limited family of p-type oxide semiconductors. Notably, CaO and\nSrO emerge as the first-of-kind sub-1-nm thickness oxide semiconductors capable\nof simultaneously meeting the ITRS HP and LP criteria for both n-and p-type\ndevices. CaO and SrO FETs outperform many existing low-dimensional\nsemiconductors, exhibiting scalability below 5-nm gate length. Our findings\noffer a pioneering effort in the ab initio, device-driven screening of sub-1-nm\nthickness oxide semiconductors, significantly broadening the material candidate\npool for future CMOS technology nodes.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab Initio Device-Driven Screening of Sub-1-nm Thickness Oxide Semiconductors for Future CMOS Technology Nodes\",\"authors\":\"Linqiang Xu, Yue Hu, Lianqiang Xu, Lin Xu, Qiuhui Li, Aili Wang, Chit Siong Lau, Jing Lu, Yee Sin Ang\",\"doi\":\"arxiv-2409.08096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin oxide semiconductors with sub-1-nm thickness are promising building\\nblocks for ultrascaled field-effect transistor (FET) applications due to their\\nresilience against short-channel effects, high air stability, and potential for\\nlow-energy device operation. However, the n-type dominance of ultrathin oxide\\nFET has hindered their integration into complementary metal-oxide-semiconductor\\n(CMOS) technology, which requires both n-and p-type devices. Here we develop an\\nab initio device-driven computational screening workflow to identify sub-1-nm\\nthickness oxide semiconductors for sub-5-nm FET applications. We demonstrate\\nthat ultrathin CaO2, CaO, and SrO are compatible with p-type device operations\\nunder both high-performance (HP) and low-power (LP) requirements specified by\\nthe International Technology Roadmap of Semiconductors (ITRS), thereby\\nexpanding the limited family of p-type oxide semiconductors. Notably, CaO and\\nSrO emerge as the first-of-kind sub-1-nm thickness oxide semiconductors capable\\nof simultaneously meeting the ITRS HP and LP criteria for both n-and p-type\\ndevices. CaO and SrO FETs outperform many existing low-dimensional\\nsemiconductors, exhibiting scalability below 5-nm gate length. Our findings\\noffer a pioneering effort in the ab initio, device-driven screening of sub-1-nm\\nthickness oxide semiconductors, significantly broadening the material candidate\\npool for future CMOS technology nodes.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
厚度小于 1 纳米的超薄氧化物半导体具有抗短沟道效应的能力、高空气稳定性以及低能耗器件运行的潜力,因此是超大规模场效应晶体管(FET)应用的理想基石。然而,超薄氧化物场效应晶体管的 n 型主导地位阻碍了它们与互补金属氧化物半导体(CMOS)技术的整合,因为该技术同时需要 n 型和 p 型器件。在此,我们开发了一种由器件驱动的计算筛选工作流程,以确定适用于 5 纳米以下场效应晶体管应用的 1 纳米以下厚度氧化物半导体。我们证明了超薄的 CaO2、CaO 和 SrO 与 p 型器件的运行兼容,符合国际半导体技术路线图 (ITRS) 规定的高性能 (HP) 和低功耗 (LP) 要求,从而扩大了有限的 p 型氧化物半导体系列。值得注意的是,氧化钙和氧化锶是首批能够同时满足 ITRS HP 和 LP 标准的 1 纳米以下厚度氧化物半导体,适用于 n 型和 p 型器件。钙氧化物和锶氧化物场效应晶体管的性能优于许多现有的低维半导体,表现出低于 5 纳米栅极长度的可扩展性。我们的研究成果开创性地对 1 纳米以下厚度的氧化物半导体进行了从头开始、器件驱动的筛选,极大地拓宽了未来 CMOS 技术节点的候选材料库。
Ab Initio Device-Driven Screening of Sub-1-nm Thickness Oxide Semiconductors for Future CMOS Technology Nodes
Ultrathin oxide semiconductors with sub-1-nm thickness are promising building
blocks for ultrascaled field-effect transistor (FET) applications due to their
resilience against short-channel effects, high air stability, and potential for
low-energy device operation. However, the n-type dominance of ultrathin oxide
FET has hindered their integration into complementary metal-oxide-semiconductor
(CMOS) technology, which requires both n-and p-type devices. Here we develop an
ab initio device-driven computational screening workflow to identify sub-1-nm
thickness oxide semiconductors for sub-5-nm FET applications. We demonstrate
that ultrathin CaO2, CaO, and SrO are compatible with p-type device operations
under both high-performance (HP) and low-power (LP) requirements specified by
the International Technology Roadmap of Semiconductors (ITRS), thereby
expanding the limited family of p-type oxide semiconductors. Notably, CaO and
SrO emerge as the first-of-kind sub-1-nm thickness oxide semiconductors capable
of simultaneously meeting the ITRS HP and LP criteria for both n-and p-type
devices. CaO and SrO FETs outperform many existing low-dimensional
semiconductors, exhibiting scalability below 5-nm gate length. Our findings
offer a pioneering effort in the ab initio, device-driven screening of sub-1-nm
thickness oxide semiconductors, significantly broadening the material candidate
pool for future CMOS technology nodes.