{"title":"分数本杰明-博纳-马霍尼-伯格斯方程的高阶预测器-校正器方法","authors":"Sunyoung Bu, Yonghyeon Jeon","doi":"10.1007/s12190-024-02223-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct a higher order predictor–corrector technique for time fractional Benjamin–Bona–Mahony–Burgers’ equations. Instead of directly using an explicit scheme as the predictor in traditional predictor–corrector methods, we employ a new predictor scheme based on the author’s previous work ([24] https://doi.org/10.1007/s10910-024-01589-6), in which the given nonlinear equation is linearized by several linearization techniques and solved by Adams–Moulton scheme for the temporal direction and fourth order finite difference scheme for the spatial direction. Once the predictor solution is obtained, the higher order Adams–Moulton method is used as the corrector. Moreover, to make much higher order technique, a multiple correction technique is introduced by repeatedly correcting the results induced from the predictor. Numerical results demonstrate the efficiency of the proposed schemes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order predictor–corrector methods for fractional Benjamin–Bona–Mahony–Burgers’ equations\",\"authors\":\"Sunyoung Bu, Yonghyeon Jeon\",\"doi\":\"10.1007/s12190-024-02223-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct a higher order predictor–corrector technique for time fractional Benjamin–Bona–Mahony–Burgers’ equations. Instead of directly using an explicit scheme as the predictor in traditional predictor–corrector methods, we employ a new predictor scheme based on the author’s previous work ([24] https://doi.org/10.1007/s10910-024-01589-6), in which the given nonlinear equation is linearized by several linearization techniques and solved by Adams–Moulton scheme for the temporal direction and fourth order finite difference scheme for the spatial direction. Once the predictor solution is obtained, the higher order Adams–Moulton method is used as the corrector. Moreover, to make much higher order technique, a multiple correction technique is introduced by repeatedly correcting the results induced from the predictor. Numerical results demonstrate the efficiency of the proposed schemes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02223-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02223-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Higher-order predictor–corrector methods for fractional Benjamin–Bona–Mahony–Burgers’ equations
In this paper, we construct a higher order predictor–corrector technique for time fractional Benjamin–Bona–Mahony–Burgers’ equations. Instead of directly using an explicit scheme as the predictor in traditional predictor–corrector methods, we employ a new predictor scheme based on the author’s previous work ([24] https://doi.org/10.1007/s10910-024-01589-6), in which the given nonlinear equation is linearized by several linearization techniques and solved by Adams–Moulton scheme for the temporal direction and fourth order finite difference scheme for the spatial direction. Once the predictor solution is obtained, the higher order Adams–Moulton method is used as the corrector. Moreover, to make much higher order technique, a multiple correction technique is introduced by repeatedly correcting the results induced from the predictor. Numerical results demonstrate the efficiency of the proposed schemes.