利用声子晶体带隙边缘模式的低相噪表面声波振荡器

Zichen Xi, Joseph G. Thomas, Jun Ji, Dongyao Wang, Zengyu Cen, Ivan I. Kravchenko, Bernadeta R. Srijanto, Yu Yao, Yizheng Zhu, Linbo Shao
{"title":"利用声子晶体带隙边缘模式的低相噪表面声波振荡器","authors":"Zichen Xi, Joseph G. Thomas, Jun Ji, Dongyao Wang, Zengyu Cen, Ivan I. Kravchenko, Bernadeta R. Srijanto, Yu Yao, Yizheng Zhu, Linbo Shao","doi":"arxiv-2409.03162","DOIUrl":null,"url":null,"abstract":"Low-phase-noise microwave-frequency integrated oscillators provide compact\nsolutions for various applications in signal processing, communications, and\nsensing. Surface acoustic waves (SAW), featuring orders-of-magnitude shorter\nwavelength than electromagnetic waves at the same frequency, enable integrated\nmicrowave-frequency systems with much smaller footprint on chip. SAW devices\nalso allow higher quality (Q) factors than electronic components at room\ntemperature. Here, we demonstrate a low-phase-noise gigahertz-frequency SAW\noscillator on 128{\\deg}Y-cut lithium niobate, where the SAW resonator occupies\na footprint of 0.05 mm$^2$. Leveraging phononic crystal bandgap-edge modes to\nbalance between Q factors and insertion losses, our 1-GHz SAW oscillator\nfeatures a low phase noise of -132.5 dBc/Hz at a 10 kHz offset frequency and an\noverlapping Hadamard deviation of $6.5\\times10^{-10}$ at an analysis time of 64\nms. The SAW resonator-based oscillator holds high potential in developing\nlow-noise sensors and acousto-optic integrated circuits.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-phase-noise surface acoustic wave oscillator using phononic crystal bandgap-edge mode\",\"authors\":\"Zichen Xi, Joseph G. Thomas, Jun Ji, Dongyao Wang, Zengyu Cen, Ivan I. Kravchenko, Bernadeta R. Srijanto, Yu Yao, Yizheng Zhu, Linbo Shao\",\"doi\":\"arxiv-2409.03162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-phase-noise microwave-frequency integrated oscillators provide compact\\nsolutions for various applications in signal processing, communications, and\\nsensing. Surface acoustic waves (SAW), featuring orders-of-magnitude shorter\\nwavelength than electromagnetic waves at the same frequency, enable integrated\\nmicrowave-frequency systems with much smaller footprint on chip. SAW devices\\nalso allow higher quality (Q) factors than electronic components at room\\ntemperature. Here, we demonstrate a low-phase-noise gigahertz-frequency SAW\\noscillator on 128{\\\\deg}Y-cut lithium niobate, where the SAW resonator occupies\\na footprint of 0.05 mm$^2$. Leveraging phononic crystal bandgap-edge modes to\\nbalance between Q factors and insertion losses, our 1-GHz SAW oscillator\\nfeatures a low phase noise of -132.5 dBc/Hz at a 10 kHz offset frequency and an\\noverlapping Hadamard deviation of $6.5\\\\times10^{-10}$ at an analysis time of 64\\nms. The SAW resonator-based oscillator holds high potential in developing\\nlow-noise sensors and acousto-optic integrated circuits.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低相噪微波频率集成振荡器为信号处理、通信和传感领域的各种应用提供了紧凑的解决方案。声表面波(SAW)的波长比相同频率的电磁波短几个数量级,因此集成微波频率系统的芯片尺寸要小得多。声表面波器件还能在室温下实现比电子元件更高的质量(Q)系数。在这里,我们在 128{deg}Y 切面的铌酸锂上展示了一种低相位噪声千兆赫频率声表面波振荡器,其中声表面波谐振器的占位面积为 0.05 mm$^2$。利用声子晶体带隙边沿模式来平衡Q系数和插入损耗,我们的1-GHz声表面波振荡器在10 kHz偏移频率下具有-132.5 dBc/Hz的低相位噪声,在64ms分析时间内具有6.5/times10^{-10}$的重叠哈达玛偏差。基于声表面波谐振器的振荡器在开发低噪声传感器和声光集成电路方面具有很大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-phase-noise surface acoustic wave oscillator using phononic crystal bandgap-edge mode
Low-phase-noise microwave-frequency integrated oscillators provide compact solutions for various applications in signal processing, communications, and sensing. Surface acoustic waves (SAW), featuring orders-of-magnitude shorter wavelength than electromagnetic waves at the same frequency, enable integrated microwave-frequency systems with much smaller footprint on chip. SAW devices also allow higher quality (Q) factors than electronic components at room temperature. Here, we demonstrate a low-phase-noise gigahertz-frequency SAW oscillator on 128{\deg}Y-cut lithium niobate, where the SAW resonator occupies a footprint of 0.05 mm$^2$. Leveraging phononic crystal bandgap-edge modes to balance between Q factors and insertion losses, our 1-GHz SAW oscillator features a low phase noise of -132.5 dBc/Hz at a 10 kHz offset frequency and an overlapping Hadamard deviation of $6.5\times10^{-10}$ at an analysis time of 64 ms. The SAW resonator-based oscillator holds high potential in developing low-noise sensors and acousto-optic integrated circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信