互嵌式金刚石场效应晶体管中的电流超过 50 mA

Damien MichezLAPLACE-CS, Juliette LetellierNEEL - SC2G, Imane HammasNEEL - SC2G, Julien PernotNEEL - SC2G, Nicolas C. RougerLAPLACE-CS
{"title":"互嵌式金刚石场效应晶体管中的电流超过 50 mA","authors":"Damien MichezLAPLACE-CS, Juliette LetellierNEEL - SC2G, Imane HammasNEEL - SC2G, Julien PernotNEEL - SC2G, Nicolas C. RougerLAPLACE-CS","doi":"arxiv-2409.03293","DOIUrl":null,"url":null,"abstract":"This letter presents the bulk diamond field-effect transistor (FET) with the\nhighest current value reported at this moment. The goal was to drastically\nincrease the current of this type of device by increasing the total gate width\nthanks to an interdigitated architecture and homogeneous growth properties. We\nreport the results obtained by fabricating and characterizing an interdigitated\njunction FET (JFET). The device develops a total gate width of 14.7 mm, with 24\nparalleled fingers and a current higher than 50 mA at VDS = -15 V, VGS = 0 V,\nat 450 K and under illumination which is the highest value reported for a bulk\ndiamond FET. Its specific ON-resistance and threshold voltage are respectively\n608 m$\\Omega$.cm${}^2$, 50 V. From Transfer length method (TLM) measurements we\nextract a resistivity of 3.6 m$\\Omega$.cm for a heavily boron-doped\n(p++)-diamond layer and 1.52 $\\Omega$.cm for a 2.1017 cm-3 p-doped diamond\nlayer at 450 K. We measured the drain current versus gate voltage\ncharacteristics at high temperature showing that it is no longer the conduction\nchannel resistance but the device access resistance that is predominant. This\nstudy indicates that it is possible to drastically improve the ON-state of FETs\nby using an interdigitated architecture, while using homogeneous large size\ndiamond layers grown by CVD.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Over 50 mA current in interdigitated diamond field effect transistor\",\"authors\":\"Damien MichezLAPLACE-CS, Juliette LetellierNEEL - SC2G, Imane HammasNEEL - SC2G, Julien PernotNEEL - SC2G, Nicolas C. RougerLAPLACE-CS\",\"doi\":\"arxiv-2409.03293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents the bulk diamond field-effect transistor (FET) with the\\nhighest current value reported at this moment. The goal was to drastically\\nincrease the current of this type of device by increasing the total gate width\\nthanks to an interdigitated architecture and homogeneous growth properties. We\\nreport the results obtained by fabricating and characterizing an interdigitated\\njunction FET (JFET). The device develops a total gate width of 14.7 mm, with 24\\nparalleled fingers and a current higher than 50 mA at VDS = -15 V, VGS = 0 V,\\nat 450 K and under illumination which is the highest value reported for a bulk\\ndiamond FET. Its specific ON-resistance and threshold voltage are respectively\\n608 m$\\\\Omega$.cm${}^2$, 50 V. From Transfer length method (TLM) measurements we\\nextract a resistivity of 3.6 m$\\\\Omega$.cm for a heavily boron-doped\\n(p++)-diamond layer and 1.52 $\\\\Omega$.cm for a 2.1017 cm-3 p-doped diamond\\nlayer at 450 K. We measured the drain current versus gate voltage\\ncharacteristics at high temperature showing that it is no longer the conduction\\nchannel resistance but the device access resistance that is predominant. This\\nstudy indicates that it is possible to drastically improve the ON-state of FETs\\nby using an interdigitated architecture, while using homogeneous large size\\ndiamond layers grown by CVD.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了目前所报道的电流值最高的块状金刚石场效应晶体管(FET)。我们的目标是通过增加栅极总宽度来大幅提高这类器件的电流,而这要归功于相互咬合的结构和均匀的生长特性。本报告介绍了通过制造和鉴定交错结场效应晶体管(JFET)获得的结果。该器件的栅极总宽度为 14.7 mm,有 24 个并联指,在 450 K 和照明条件下,当 VDS = -15 V、VGS = 0 V 时,电流高于 50 mA,这是目前所报道的体金刚石场效应晶体管的最高值。其比导通电阻和阈值电压分别为 608 m$\Omega$.cm${}^2$ 和 50 V。根据转移长度法(TLM)测量,我们得出在 450 K 时,重度掺硼(p++)金刚石层的电阻率为 3.6 m$\Omega$.cm,而 2.1017 cm-3 p 掺杂金刚石层的电阻率为 1.52 $\Omega$.cm。这项研究表明,在使用通过 CVD 生长的均质大尺寸金刚石层的同时,通过使用相互咬合的结构可以大幅改善场效应晶体管的导通状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Over 50 mA current in interdigitated diamond field effect transistor
This letter presents the bulk diamond field-effect transistor (FET) with the highest current value reported at this moment. The goal was to drastically increase the current of this type of device by increasing the total gate width thanks to an interdigitated architecture and homogeneous growth properties. We report the results obtained by fabricating and characterizing an interdigitated junction FET (JFET). The device develops a total gate width of 14.7 mm, with 24 paralleled fingers and a current higher than 50 mA at VDS = -15 V, VGS = 0 V, at 450 K and under illumination which is the highest value reported for a bulk diamond FET. Its specific ON-resistance and threshold voltage are respectively 608 m$\Omega$.cm${}^2$, 50 V. From Transfer length method (TLM) measurements we extract a resistivity of 3.6 m$\Omega$.cm for a heavily boron-doped (p++)-diamond layer and 1.52 $\Omega$.cm for a 2.1017 cm-3 p-doped diamond layer at 450 K. We measured the drain current versus gate voltage characteristics at high temperature showing that it is no longer the conduction channel resistance but the device access resistance that is predominant. This study indicates that it is possible to drastically improve the ON-state of FETs by using an interdigitated architecture, while using homogeneous large size diamond layers grown by CVD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信