{"title":"关于形式为 $$2^{g(j_1)}+2^{g(j_2)}+p$$ 的整数","authors":"Xue-Gong Sun","doi":"10.1007/s11139-024-00945-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(k\\ge 3\\)</span> be a positive integer and let <span>\\(g(x)=a_{k}x^{k}+a_{k-1}x^{k-1}+\\cdots +a_0\\in \\mathbb {Z}[x]\\)</span> with <span>\\(\\gcd (a_{0}, \\ldots , a_{k-1},a_{k})=1, a_{k}>0\\)</span>. In this paper, we investigate the density of natural numbers which can be represented by the form <span>\\(2^{g(j_1)}+2^{g(j_2)}+p\\)</span>, where <span>\\(j_1,j_2\\)</span> are positive integers and <i>p</i> is an odd prime.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On integers of the form $$2^{g(j_1)}+2^{g(j_2)}+p$$\",\"authors\":\"Xue-Gong Sun\",\"doi\":\"10.1007/s11139-024-00945-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(k\\\\ge 3\\\\)</span> be a positive integer and let <span>\\\\(g(x)=a_{k}x^{k}+a_{k-1}x^{k-1}+\\\\cdots +a_0\\\\in \\\\mathbb {Z}[x]\\\\)</span> with <span>\\\\(\\\\gcd (a_{0}, \\\\ldots , a_{k-1},a_{k})=1, a_{k}>0\\\\)</span>. In this paper, we investigate the density of natural numbers which can be represented by the form <span>\\\\(2^{g(j_1)}+2^{g(j_2)}+p\\\\)</span>, where <span>\\\\(j_1,j_2\\\\)</span> are positive integers and <i>p</i> is an odd prime.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00945-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00945-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On integers of the form $$2^{g(j_1)}+2^{g(j_2)}+p$$
Let \(k\ge 3\) be a positive integer and let \(g(x)=a_{k}x^{k}+a_{k-1}x^{k-1}+\cdots +a_0\in \mathbb {Z}[x]\) with \(\gcd (a_{0}, \ldots , a_{k-1},a_{k})=1, a_{k}>0\). In this paper, we investigate the density of natural numbers which can be represented by the form \(2^{g(j_1)}+2^{g(j_2)}+p\), where \(j_1,j_2\) are positive integers and p is an odd prime.