施瓦兹方程的超几何解

Khalil Besrour, Abdellah Sebbar
{"title":"施瓦兹方程的超几何解","authors":"Khalil Besrour, Abdellah Sebbar","doi":"10.1007/s11139-024-00930-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the modular differential equation <span>\\(y''+s\\,E_4\\, y=0\\)</span> where <span>\\(E_4\\)</span> is the weight 4 Eisenstein series and <span>\\(s=\\pi ^2r^2\\)</span> with <span>\\(r=n/m\\)</span> being a rational number in reduced form such that <span>\\(m\\ge 7\\)</span>. This study is carried out by solving the associated Schwarzian equation <span>\\(\\{h,\\tau \\}=2\\,s\\,E_4\\)</span> and using the theory of equivariant functions on the upper half-plane and the 2-dimensional vector-valued modular forms. The solutions are expressed in terms of the Gauss hypergeometric series. This completes the study of the above-mentioned modular differential equation of the associated Schwarzian equation given that the cases <span>\\(1\\le m\\le 6\\)</span> have already been treated in Saber and Sebbar (Forum Math 32(6):1621–1636, 2020; Ramanujan J 57(2):551–568, 2022; J Math Anal Appl 508:125887, 2022; Modular differential equations and algebraic systems, http://arxiv.org/abs/2302.13459).</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergeometric solutions to Schwarzian equations\",\"authors\":\"Khalil Besrour, Abdellah Sebbar\",\"doi\":\"10.1007/s11139-024-00930-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the modular differential equation <span>\\\\(y''+s\\\\,E_4\\\\, y=0\\\\)</span> where <span>\\\\(E_4\\\\)</span> is the weight 4 Eisenstein series and <span>\\\\(s=\\\\pi ^2r^2\\\\)</span> with <span>\\\\(r=n/m\\\\)</span> being a rational number in reduced form such that <span>\\\\(m\\\\ge 7\\\\)</span>. This study is carried out by solving the associated Schwarzian equation <span>\\\\(\\\\{h,\\\\tau \\\\}=2\\\\,s\\\\,E_4\\\\)</span> and using the theory of equivariant functions on the upper half-plane and the 2-dimensional vector-valued modular forms. The solutions are expressed in terms of the Gauss hypergeometric series. This completes the study of the above-mentioned modular differential equation of the associated Schwarzian equation given that the cases <span>\\\\(1\\\\le m\\\\le 6\\\\)</span> have already been treated in Saber and Sebbar (Forum Math 32(6):1621–1636, 2020; Ramanujan J 57(2):551–568, 2022; J Math Anal Appl 508:125887, 2022; Modular differential equations and algebraic systems, http://arxiv.org/abs/2302.13459).</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00930-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00930-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了模态微分方程(y''+s\,E_4\, y=0\ ),其中 \(E_4\) 是权重 4 爱森斯坦级数,\(s=\pi ^2r^2\),\(r=n/m\) 是还原形式的有理数,使得 \(m\ge 7\).这项研究是通过求解相关的施瓦兹方程 \(\{h,\tau\}=2\,s\,E_4\)并利用上半平面等变函数理论和二维矢量值模态来进行的。解用高斯超几何级数表示。鉴于 Saber 和 Sebbar (Forum Math 32(6):1621-1636, 2020; Ramanujan J 57(2):551-568, 2022; J Math Anal Appl 508:125887, 2022; Modular differential equations and algebraic systems, http://arxiv.org/abs/2302.13459) 已经处理了 \(1\le m\le 6\) 的情况,本文完成了对上述相关施瓦兹方程的模态微分方程的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergeometric solutions to Schwarzian equations

In this paper we study the modular differential equation \(y''+s\,E_4\, y=0\) where \(E_4\) is the weight 4 Eisenstein series and \(s=\pi ^2r^2\) with \(r=n/m\) being a rational number in reduced form such that \(m\ge 7\). This study is carried out by solving the associated Schwarzian equation \(\{h,\tau \}=2\,s\,E_4\) and using the theory of equivariant functions on the upper half-plane and the 2-dimensional vector-valued modular forms. The solutions are expressed in terms of the Gauss hypergeometric series. This completes the study of the above-mentioned modular differential equation of the associated Schwarzian equation given that the cases \(1\le m\le 6\) have already been treated in Saber and Sebbar (Forum Math 32(6):1621–1636, 2020; Ramanujan J 57(2):551–568, 2022; J Math Anal Appl 508:125887, 2022; Modular differential equations and algebraic systems, http://arxiv.org/abs/2302.13459).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信