Yu Sun;Zihui Wu;Yifan Chen;Berthy T. Feng;Katherine L. Bouman
{"title":"利用基于分数的生成先验进行可证明的概率成像","authors":"Yu Sun;Zihui Wu;Yifan Chen;Berthy T. Feng;Katherine L. Bouman","doi":"10.1109/TCI.2024.3449114","DOIUrl":null,"url":null,"abstract":"Estimating high-quality images while also quantifying their uncertainty are two desired features in an image reconstruction algorithm for solving ill-posed inverse problems. In this paper, we propose \n<italic>plug-and-play Monte Carlo (PMC)</i>\n as a principled framework for characterizing the space of possible solutions to a general inverse problem. PMC is able to incorporate expressive score-based generative priors for high-quality image reconstruction while also performing uncertainty quantification via posterior sampling. In particular, we develop two PMC algorithms that can be viewed as the sampling analogues of the traditional plug-and-play priors (PnP) and regularization by denoising (RED) algorithms. To improve the sampling efficiency, we introduce weighted annealing into these PMC algorithms, further developing two additional annealed PMC algorithms (APMC). We establish a theoretical analysis for characterizing the convergence behavior of PMC algorithms. Our analysis provides non-asymptotic stationarity guarantees in terms of the Fisher information, fully compatible with the joint presence of weighted annealing, potentially non-log-concave likelihoods, and imperfect score networks. We demonstrate the performance of the PMC algorithms on multiple representative inverse problems with both linear and nonlinear forward models. Experimental results show that PMC significantly improves reconstruction quality and enables high-fidelity uncertainty quantification.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1290-1305"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provable Probabilistic Imaging Using Score-Based Generative Priors\",\"authors\":\"Yu Sun;Zihui Wu;Yifan Chen;Berthy T. Feng;Katherine L. Bouman\",\"doi\":\"10.1109/TCI.2024.3449114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating high-quality images while also quantifying their uncertainty are two desired features in an image reconstruction algorithm for solving ill-posed inverse problems. In this paper, we propose \\n<italic>plug-and-play Monte Carlo (PMC)</i>\\n as a principled framework for characterizing the space of possible solutions to a general inverse problem. PMC is able to incorporate expressive score-based generative priors for high-quality image reconstruction while also performing uncertainty quantification via posterior sampling. In particular, we develop two PMC algorithms that can be viewed as the sampling analogues of the traditional plug-and-play priors (PnP) and regularization by denoising (RED) algorithms. To improve the sampling efficiency, we introduce weighted annealing into these PMC algorithms, further developing two additional annealed PMC algorithms (APMC). We establish a theoretical analysis for characterizing the convergence behavior of PMC algorithms. Our analysis provides non-asymptotic stationarity guarantees in terms of the Fisher information, fully compatible with the joint presence of weighted annealing, potentially non-log-concave likelihoods, and imperfect score networks. We demonstrate the performance of the PMC algorithms on multiple representative inverse problems with both linear and nonlinear forward models. Experimental results show that PMC significantly improves reconstruction quality and enables high-fidelity uncertainty quantification.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"1290-1305\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10645293/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10645293/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Provable Probabilistic Imaging Using Score-Based Generative Priors
Estimating high-quality images while also quantifying their uncertainty are two desired features in an image reconstruction algorithm for solving ill-posed inverse problems. In this paper, we propose
plug-and-play Monte Carlo (PMC)
as a principled framework for characterizing the space of possible solutions to a general inverse problem. PMC is able to incorporate expressive score-based generative priors for high-quality image reconstruction while also performing uncertainty quantification via posterior sampling. In particular, we develop two PMC algorithms that can be viewed as the sampling analogues of the traditional plug-and-play priors (PnP) and regularization by denoising (RED) algorithms. To improve the sampling efficiency, we introduce weighted annealing into these PMC algorithms, further developing two additional annealed PMC algorithms (APMC). We establish a theoretical analysis for characterizing the convergence behavior of PMC algorithms. Our analysis provides non-asymptotic stationarity guarantees in terms of the Fisher information, fully compatible with the joint presence of weighted annealing, potentially non-log-concave likelihoods, and imperfect score networks. We demonstrate the performance of the PMC algorithms on multiple representative inverse problems with both linear and nonlinear forward models. Experimental results show that PMC significantly improves reconstruction quality and enables high-fidelity uncertainty quantification.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.