根据 TESS 数据发现 23 个新的 "心跳星 "系统

IF 4.7 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Min-Yu Li, Sheng-Bang Qian, Ai-Ying Zhou, Li-Ying Zhu, Wen-Ping Liao, Er-Gang Zhao, Xiang-Dong Shi, Fu-Xing Li, Qi-Bin Sun
{"title":"根据 TESS 数据发现 23 个新的 \"心跳星 \"系统","authors":"Min-Yu Li, Sheng-Bang Qian, Ai-Ying Zhou, Li-Ying Zhu, Wen-Ping Liao, Er-Gang Zhao, Xiang-Dong Shi, Fu-Xing Li, Qi-Bin Sun","doi":"10.1093/mnras/stae2057","DOIUrl":null,"url":null,"abstract":"Heartbeat stars (HBSs) are ideal astrophysical laboratories to study the formation and evolution of binary stars in eccentric orbits and the internal structural changes of their components under strong tidal action. We discover 23 new HBSs based on TESS photometric data. The orbital parameters, including orbital period, eccentricity, orbital inclination, argument of periastron, and epoch of periastron passage of these HBSs are derived by using a corrected version of Kumar et al. model based on the Markov Chain Monte Carlo (MCMC) method. The preliminary results show that these HBSs have orbital periods in the range from 2.7 to 20 days and eccentricities in the range from 0.08 to 0.70. The eccentricity-period relation of these objects shows a positive correlation between eccentricity and period, and also shows the existence of orbital circularization. The Hertzsprung-Russell diagram shows that the HBSs are not all located in a particular area. The distribution of the derived parameters suggests a selection bias within the TESS survey towards HBSs with shorter periods. These objects are a very useful source to study the structure and evolution of eccentricity orbit binaries and to extend the TESS HBS catalog.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"79 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twenty-three new Heartbeat Star systems discovered based on TESS data\",\"authors\":\"Min-Yu Li, Sheng-Bang Qian, Ai-Ying Zhou, Li-Ying Zhu, Wen-Ping Liao, Er-Gang Zhao, Xiang-Dong Shi, Fu-Xing Li, Qi-Bin Sun\",\"doi\":\"10.1093/mnras/stae2057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heartbeat stars (HBSs) are ideal astrophysical laboratories to study the formation and evolution of binary stars in eccentric orbits and the internal structural changes of their components under strong tidal action. We discover 23 new HBSs based on TESS photometric data. The orbital parameters, including orbital period, eccentricity, orbital inclination, argument of periastron, and epoch of periastron passage of these HBSs are derived by using a corrected version of Kumar et al. model based on the Markov Chain Monte Carlo (MCMC) method. The preliminary results show that these HBSs have orbital periods in the range from 2.7 to 20 days and eccentricities in the range from 0.08 to 0.70. The eccentricity-period relation of these objects shows a positive correlation between eccentricity and period, and also shows the existence of orbital circularization. The Hertzsprung-Russell diagram shows that the HBSs are not all located in a particular area. The distribution of the derived parameters suggests a selection bias within the TESS survey towards HBSs with shorter periods. These objects are a very useful source to study the structure and evolution of eccentricity orbit binaries and to extend the TESS HBS catalog.\",\"PeriodicalId\":18930,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stae2057\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae2057","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

心跳星(HBSs)是研究偏心轨道双星的形成和演化及其在强烈潮汐作用下内部结构变化的理想天体物理实验室。我们根据TESS的测光数据发现了23颗新的HBS。我们使用基于马尔可夫链蒙特卡洛(MCMC)方法的库马尔等人修正版模型,推导出了这些HBS的轨道参数,包括轨道周期、偏心率、轨道倾角、周天星参数和周天星通过的纪元。初步结果表明,这些 HBS 的轨道周期在 2.7 到 20 天之间,偏心率在 0.08 到 0.70 之间。这些天体的偏心率-周期关系表明偏心率和周期之间呈正相关,同时也表明存在轨道环化现象。赫兹普隆-拉塞尔图显示,HBS 并非都位于一个特定的区域。推导参数的分布表明,在 TESS 勘测中存在着对周期较短的 HBS 的选择偏差。这些天体对于研究偏心轨道双星的结构和演变以及扩展 TESS HBS 星表都是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twenty-three new Heartbeat Star systems discovered based on TESS data
Heartbeat stars (HBSs) are ideal astrophysical laboratories to study the formation and evolution of binary stars in eccentric orbits and the internal structural changes of their components under strong tidal action. We discover 23 new HBSs based on TESS photometric data. The orbital parameters, including orbital period, eccentricity, orbital inclination, argument of periastron, and epoch of periastron passage of these HBSs are derived by using a corrected version of Kumar et al. model based on the Markov Chain Monte Carlo (MCMC) method. The preliminary results show that these HBSs have orbital periods in the range from 2.7 to 20 days and eccentricities in the range from 0.08 to 0.70. The eccentricity-period relation of these objects shows a positive correlation between eccentricity and period, and also shows the existence of orbital circularization. The Hertzsprung-Russell diagram shows that the HBSs are not all located in a particular area. The distribution of the derived parameters suggests a selection bias within the TESS survey towards HBSs with shorter periods. These objects are a very useful source to study the structure and evolution of eccentricity orbit binaries and to extend the TESS HBS catalog.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
37.50%
发文量
3198
审稿时长
3 months
期刊介绍: Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信