{"title":"科尔-科尔模型参数在介电常数和电导率公式中的关系","authors":"Jonas K Limbrock, Andreas Kemna","doi":"10.1093/gji/ggae300","DOIUrl":null,"url":null,"abstract":"Summary For the analysis of spectral induced polarization (SIP) measurements and for the description of frequency-dependent electrical relaxation responses, so-called Cole-Cole models (CCMs) are widely used. Typically, CCM formulations in terms of complex electrical conductivity or complex electrical resistivity are used in geophysical applications. The differences between these model descriptions, in particular between the respective time constants, and their conversion have been studied. A third variant of the model is formulated in terms of complex permittivity, commonly used in materials science. In general, all these model formulations can be used equivalently for fitting SIP data, which, however, results in differing values for some of the model parameters. For a meaningful comparison of CCM parameters of different samples or measurements, it is necessary that they are based on the same model formulation. In this work, the relationships between the Debye model (DM) and CCM parameters in the formulation for complex permittivity and complex conductivity are studied. A direct analytical conversion is possible for generalized DM formulations, both in single- and multi-term model formulations, resulting in relationships between the respective relaxation time distributions (RTDs). Such a direct conversion for CCM formulations is not possible. We however derived an approximate relationship between log -normal RTD and CCM formulations and respective permittivity and conductivity parameter values. Our study also highlights the significance of using consistent model formulations when experimental data are compared in terms of DM or CCM parameters, as parameters used to predict ice temperature are incorrect if the conductivity time constant is used to predict the temperature from interpolation of a permittivity time constant-temperature relationship.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between Cole-Cole model parameters in permittivity and conductivity formulation\",\"authors\":\"Jonas K Limbrock, Andreas Kemna\",\"doi\":\"10.1093/gji/ggae300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary For the analysis of spectral induced polarization (SIP) measurements and for the description of frequency-dependent electrical relaxation responses, so-called Cole-Cole models (CCMs) are widely used. Typically, CCM formulations in terms of complex electrical conductivity or complex electrical resistivity are used in geophysical applications. The differences between these model descriptions, in particular between the respective time constants, and their conversion have been studied. A third variant of the model is formulated in terms of complex permittivity, commonly used in materials science. In general, all these model formulations can be used equivalently for fitting SIP data, which, however, results in differing values for some of the model parameters. For a meaningful comparison of CCM parameters of different samples or measurements, it is necessary that they are based on the same model formulation. In this work, the relationships between the Debye model (DM) and CCM parameters in the formulation for complex permittivity and complex conductivity are studied. A direct analytical conversion is possible for generalized DM formulations, both in single- and multi-term model formulations, resulting in relationships between the respective relaxation time distributions (RTDs). Such a direct conversion for CCM formulations is not possible. We however derived an approximate relationship between log -normal RTD and CCM formulations and respective permittivity and conductivity parameter values. Our study also highlights the significance of using consistent model formulations when experimental data are compared in terms of DM or CCM parameters, as parameters used to predict ice temperature are incorrect if the conductivity time constant is used to predict the temperature from interpolation of a permittivity time constant-temperature relationship.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae300\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae300","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Relationship between Cole-Cole model parameters in permittivity and conductivity formulation
Summary For the analysis of spectral induced polarization (SIP) measurements and for the description of frequency-dependent electrical relaxation responses, so-called Cole-Cole models (CCMs) are widely used. Typically, CCM formulations in terms of complex electrical conductivity or complex electrical resistivity are used in geophysical applications. The differences between these model descriptions, in particular between the respective time constants, and their conversion have been studied. A third variant of the model is formulated in terms of complex permittivity, commonly used in materials science. In general, all these model formulations can be used equivalently for fitting SIP data, which, however, results in differing values for some of the model parameters. For a meaningful comparison of CCM parameters of different samples or measurements, it is necessary that they are based on the same model formulation. In this work, the relationships between the Debye model (DM) and CCM parameters in the formulation for complex permittivity and complex conductivity are studied. A direct analytical conversion is possible for generalized DM formulations, both in single- and multi-term model formulations, resulting in relationships between the respective relaxation time distributions (RTDs). Such a direct conversion for CCM formulations is not possible. We however derived an approximate relationship between log -normal RTD and CCM formulations and respective permittivity and conductivity parameter values. Our study also highlights the significance of using consistent model formulations when experimental data are compared in terms of DM or CCM parameters, as parameters used to predict ice temperature are incorrect if the conductivity time constant is used to predict the temperature from interpolation of a permittivity time constant-temperature relationship.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.