Guido Penta de Peppo, Michele Cercato, Giorgio De Donno
{"title":"在包含地形的结构网格上对 ERT 和 SRT 数据进行跨梯度联合反演和聚类","authors":"Guido Penta de Peppo, Michele Cercato, Giorgio De Donno","doi":"10.1093/gji/ggae326","DOIUrl":null,"url":null,"abstract":"Summary The combination of electrical resistivity and seismic refraction tomography is a common practice for the characterization of subsurface features. Presently, the cross-gradient inversion scheme stands out as one of the most robust joint approaches, and some authors modified it to manage complex topographies on unstructured meshes even if at the expense of introducing additional parameters in the inversion process. We propose in this work a cross-gradient algorithm for jointly inverting electrical and seismic tomographic data on structured meshes in cases with non-flat topography. The proposed approach preserves the benefit of the classical cross-gradient approach without the need to impose physical length scales, as for irregular meshes. The quality of the results is evaluated in comparison with independent inversion through a new standardized cross-gradient index and a fuzzy c-means analysis that provides an assessment of the reconstruction accuracy through the membership function. The proposed method was applied to both synthetic models and field-scale examples located in Central Italy, where an accurate geophysical reconstruction is needed for the rehabilitation of existing dams. For all cases, joint inversion yielded superior results compared to independent inversion, demonstrating better agreement with available borehole data. The effectiveness of the joint approach was also demonstrated by the post-inversion tools, where the new cross-gradient index highlighted changes in structural similarity whilst fuzzy c-means clustering allowed for a quantitative reconstruction (position and shape) of the main units at the sites, facilitating the detection of site layering modifications.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-gradient joint inversion and clustering of ERT and SRT data on structured meshes incorporating topography\",\"authors\":\"Guido Penta de Peppo, Michele Cercato, Giorgio De Donno\",\"doi\":\"10.1093/gji/ggae326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The combination of electrical resistivity and seismic refraction tomography is a common practice for the characterization of subsurface features. Presently, the cross-gradient inversion scheme stands out as one of the most robust joint approaches, and some authors modified it to manage complex topographies on unstructured meshes even if at the expense of introducing additional parameters in the inversion process. We propose in this work a cross-gradient algorithm for jointly inverting electrical and seismic tomographic data on structured meshes in cases with non-flat topography. The proposed approach preserves the benefit of the classical cross-gradient approach without the need to impose physical length scales, as for irregular meshes. The quality of the results is evaluated in comparison with independent inversion through a new standardized cross-gradient index and a fuzzy c-means analysis that provides an assessment of the reconstruction accuracy through the membership function. The proposed method was applied to both synthetic models and field-scale examples located in Central Italy, where an accurate geophysical reconstruction is needed for the rehabilitation of existing dams. For all cases, joint inversion yielded superior results compared to independent inversion, demonstrating better agreement with available borehole data. The effectiveness of the joint approach was also demonstrated by the post-inversion tools, where the new cross-gradient index highlighted changes in structural similarity whilst fuzzy c-means clustering allowed for a quantitative reconstruction (position and shape) of the main units at the sites, facilitating the detection of site layering modifications.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae326\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae326","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Cross-gradient joint inversion and clustering of ERT and SRT data on structured meshes incorporating topography
Summary The combination of electrical resistivity and seismic refraction tomography is a common practice for the characterization of subsurface features. Presently, the cross-gradient inversion scheme stands out as one of the most robust joint approaches, and some authors modified it to manage complex topographies on unstructured meshes even if at the expense of introducing additional parameters in the inversion process. We propose in this work a cross-gradient algorithm for jointly inverting electrical and seismic tomographic data on structured meshes in cases with non-flat topography. The proposed approach preserves the benefit of the classical cross-gradient approach without the need to impose physical length scales, as for irregular meshes. The quality of the results is evaluated in comparison with independent inversion through a new standardized cross-gradient index and a fuzzy c-means analysis that provides an assessment of the reconstruction accuracy through the membership function. The proposed method was applied to both synthetic models and field-scale examples located in Central Italy, where an accurate geophysical reconstruction is needed for the rehabilitation of existing dams. For all cases, joint inversion yielded superior results compared to independent inversion, demonstrating better agreement with available borehole data. The effectiveness of the joint approach was also demonstrated by the post-inversion tools, where the new cross-gradient index highlighted changes in structural similarity whilst fuzzy c-means clustering allowed for a quantitative reconstruction (position and shape) of the main units at the sites, facilitating the detection of site layering modifications.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.