{"title":"利用卡尔曼滤波器估算地震仪时钟时间偏移,实现精确的地震速度变化","authors":"Tomoya Takano, Kiwamu Nishida","doi":"10.1093/gji/ggae322","DOIUrl":null,"url":null,"abstract":"Summary Monitoring seismic velocity changes obtained from ambient noise correlations is widely used to understand changes in rock properties in response to earthquakes, volcanic activities, and environmental changes. Since continuous seismic data has been accumulated, this method can estimate long-term changes in seismic velocity, such as crustal recovery after a major earthquake and temporal variations in seismic velocity related to long-term environmental change. Changes in seismic velocity can be estimated with a high temporal resolution by measuring the phase differences of ambient noise correlations based on a seismic interferometry method. Still, these phase differences are influenced not only by seismic wave velocity changes but also by errors in clock timing in seismometers. The clock drift occurs due to out-of-synchronisation with the GPS clock and the drift of the internal clock. Therefore, to accurately monitor temporal changes in crustal structure by measuring the phase differences of noise correlations, it is crucial to evaluate the contribution of errors in clock timing to the phase differences. Recently, a method using an extended Kalman filter based on a state-space model was developed for reliable detection of temporal changes in the waveforms of ambient noise correlations, with the state-space model offering the advantage of flexible modelling of time series data. In this study, we incorporated the time shifts caused by clock time errors of the seismometer into the state-space model of the temporal changes in ambient noise correlations. We estimated seismic velocity changes, amplitude changes of noise correlations, and clock time errors from 2010 April to 2021 September at seismic stations around the Shinmoe-dake volcano in Japan, which experienced eruptions in 2011 and 2018, respectively. Several stations exhibited clear clock time offsets, and the occurrence of clock time shifts coincided with the dates when the data logger was turned off for seismic station maintenance or replacement of the seismometer. The proposed method provides stable estimations with respect to the signal-to-noise ratio of the waveform, and this stable estimation facilitates accurate timing of seismic recordings, enabling precise analysis of seismic phase arrival times.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"54 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of seismometer clock time offsets using Kalman Filter toward accurate seismic velocity change\",\"authors\":\"Tomoya Takano, Kiwamu Nishida\",\"doi\":\"10.1093/gji/ggae322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Monitoring seismic velocity changes obtained from ambient noise correlations is widely used to understand changes in rock properties in response to earthquakes, volcanic activities, and environmental changes. Since continuous seismic data has been accumulated, this method can estimate long-term changes in seismic velocity, such as crustal recovery after a major earthquake and temporal variations in seismic velocity related to long-term environmental change. Changes in seismic velocity can be estimated with a high temporal resolution by measuring the phase differences of ambient noise correlations based on a seismic interferometry method. Still, these phase differences are influenced not only by seismic wave velocity changes but also by errors in clock timing in seismometers. The clock drift occurs due to out-of-synchronisation with the GPS clock and the drift of the internal clock. Therefore, to accurately monitor temporal changes in crustal structure by measuring the phase differences of noise correlations, it is crucial to evaluate the contribution of errors in clock timing to the phase differences. Recently, a method using an extended Kalman filter based on a state-space model was developed for reliable detection of temporal changes in the waveforms of ambient noise correlations, with the state-space model offering the advantage of flexible modelling of time series data. In this study, we incorporated the time shifts caused by clock time errors of the seismometer into the state-space model of the temporal changes in ambient noise correlations. We estimated seismic velocity changes, amplitude changes of noise correlations, and clock time errors from 2010 April to 2021 September at seismic stations around the Shinmoe-dake volcano in Japan, which experienced eruptions in 2011 and 2018, respectively. Several stations exhibited clear clock time offsets, and the occurrence of clock time shifts coincided with the dates when the data logger was turned off for seismic station maintenance or replacement of the seismometer. The proposed method provides stable estimations with respect to the signal-to-noise ratio of the waveform, and this stable estimation facilitates accurate timing of seismic recordings, enabling precise analysis of seismic phase arrival times.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae322\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae322","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Estimation of seismometer clock time offsets using Kalman Filter toward accurate seismic velocity change
Summary Monitoring seismic velocity changes obtained from ambient noise correlations is widely used to understand changes in rock properties in response to earthquakes, volcanic activities, and environmental changes. Since continuous seismic data has been accumulated, this method can estimate long-term changes in seismic velocity, such as crustal recovery after a major earthquake and temporal variations in seismic velocity related to long-term environmental change. Changes in seismic velocity can be estimated with a high temporal resolution by measuring the phase differences of ambient noise correlations based on a seismic interferometry method. Still, these phase differences are influenced not only by seismic wave velocity changes but also by errors in clock timing in seismometers. The clock drift occurs due to out-of-synchronisation with the GPS clock and the drift of the internal clock. Therefore, to accurately monitor temporal changes in crustal structure by measuring the phase differences of noise correlations, it is crucial to evaluate the contribution of errors in clock timing to the phase differences. Recently, a method using an extended Kalman filter based on a state-space model was developed for reliable detection of temporal changes in the waveforms of ambient noise correlations, with the state-space model offering the advantage of flexible modelling of time series data. In this study, we incorporated the time shifts caused by clock time errors of the seismometer into the state-space model of the temporal changes in ambient noise correlations. We estimated seismic velocity changes, amplitude changes of noise correlations, and clock time errors from 2010 April to 2021 September at seismic stations around the Shinmoe-dake volcano in Japan, which experienced eruptions in 2011 and 2018, respectively. Several stations exhibited clear clock time offsets, and the occurrence of clock time shifts coincided with the dates when the data logger was turned off for seismic station maintenance or replacement of the seismometer. The proposed method provides stable estimations with respect to the signal-to-noise ratio of the waveform, and this stable estimation facilitates accurate timing of seismic recordings, enabling precise analysis of seismic phase arrival times.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.