基于集合卡尔曼反演的地震移动时间层析成像技术

IF 2.8 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yunduo Li, Yijie Zhang, Xueyu Zhu, Jinghuai Gao
{"title":"基于集合卡尔曼反演的地震移动时间层析成像技术","authors":"Yunduo Li, Yijie Zhang, Xueyu Zhu, Jinghuai Gao","doi":"10.1093/gji/ggae329","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new seismic travel-time tomography approach that combines ensemble Kalman inversion (EKI) with Neural Networks (NNs) to facilitate the inference of complex underground velocity fields. Our methodology tackles the challenges of high-dimensional velocity models through an efficient neural network parameterization, enabling efficient training on coarse grids and accurate output on finer grids. This unique strategy, combined with a reduced-resolution forward solver, significantly enhances computational efficiency. Leveraging the robust capabilities of EKI, our method not only achieves rapid computations but also delivers informative uncertainty quantification for the estimated results. Through extensive numerical experiments, we demonstrate the exceptional accuracy and uncertainty quantification capabilities of our EKI-NNs approach. Even in the face of challenging geological scenarios, our method consistently generates valuable initial models for full wave inversion (FWI).","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"34 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic travel-time tomography based on Ensemble Kalman Inversion\",\"authors\":\"Yunduo Li, Yijie Zhang, Xueyu Zhu, Jinghuai Gao\",\"doi\":\"10.1093/gji/ggae329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new seismic travel-time tomography approach that combines ensemble Kalman inversion (EKI) with Neural Networks (NNs) to facilitate the inference of complex underground velocity fields. Our methodology tackles the challenges of high-dimensional velocity models through an efficient neural network parameterization, enabling efficient training on coarse grids and accurate output on finer grids. This unique strategy, combined with a reduced-resolution forward solver, significantly enhances computational efficiency. Leveraging the robust capabilities of EKI, our method not only achieves rapid computations but also delivers informative uncertainty quantification for the estimated results. Through extensive numerical experiments, we demonstrate the exceptional accuracy and uncertainty quantification capabilities of our EKI-NNs approach. Even in the face of challenging geological scenarios, our method consistently generates valuable initial models for full wave inversion (FWI).\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae329\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae329","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新的地震旅行时间层析成像方法,该方法将集合卡尔曼反演(EKI)与神经网络(NNs)相结合,以促进复杂地下速度场的推断。我们的方法通过高效的神经网络参数化来应对高维速度模型的挑战,从而实现在粗网格上的高效训练和在细网格上的精确输出。这种独特的策略与降低分辨率的前向求解器相结合,大大提高了计算效率。利用 EKI 的强大功能,我们的方法不仅实现了快速计算,还为估计结果提供了翔实的不确定性量化。通过大量的数值实验,我们证明了 EKI-NNs 方法的卓越精度和不确定性量化能力。即使面对具有挑战性的地质情况,我们的方法也能为全波反演(FWI)持续生成有价值的初始模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic travel-time tomography based on Ensemble Kalman Inversion
In this paper, we present a new seismic travel-time tomography approach that combines ensemble Kalman inversion (EKI) with Neural Networks (NNs) to facilitate the inference of complex underground velocity fields. Our methodology tackles the challenges of high-dimensional velocity models through an efficient neural network parameterization, enabling efficient training on coarse grids and accurate output on finer grids. This unique strategy, combined with a reduced-resolution forward solver, significantly enhances computational efficiency. Leveraging the robust capabilities of EKI, our method not only achieves rapid computations but also delivers informative uncertainty quantification for the estimated results. Through extensive numerical experiments, we demonstrate the exceptional accuracy and uncertainty quantification capabilities of our EKI-NNs approach. Even in the face of challenging geological scenarios, our method consistently generates valuable initial models for full wave inversion (FWI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Journal International
Geophysical Journal International 地学-地球化学与地球物理
CiteScore
5.40
自引率
10.70%
发文量
436
审稿时长
3.3 months
期刊介绍: Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信