{"title":"具有额外内部耦合的扩散耦合微分方程系统的动态特性","authors":"L. I. Ivanovskiy","doi":"10.1134/S0040577924080038","DOIUrl":null,"url":null,"abstract":"<p> We study the dynamics of a system of differential equations with the diffusion interaction and an additional internal coupling. Such systems are interesting because a slight variation in the coefficient at the additional coupling allows obtaining intricate scenarios of phase rearrangements. For the system under study, we find the critical dependence of the parameters such that zero equilibrium loses stability as two spatially inhomogeneous states appear in one case and a cycle in another case. With the parameter values close to the critical ones, asymptotic formulas are obtained for the regimes that branch off from the zero solution. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 2","pages":"1282 - 1293"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling\",\"authors\":\"L. I. Ivanovskiy\",\"doi\":\"10.1134/S0040577924080038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the dynamics of a system of differential equations with the diffusion interaction and an additional internal coupling. Such systems are interesting because a slight variation in the coefficient at the additional coupling allows obtaining intricate scenarios of phase rearrangements. For the system under study, we find the critical dependence of the parameters such that zero equilibrium loses stability as two spatially inhomogeneous states appear in one case and a cycle in another case. With the parameter values close to the critical ones, asymptotic formulas are obtained for the regimes that branch off from the zero solution. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"220 2\",\"pages\":\"1282 - 1293\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924080038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924080038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling
We study the dynamics of a system of differential equations with the diffusion interaction and an additional internal coupling. Such systems are interesting because a slight variation in the coefficient at the additional coupling allows obtaining intricate scenarios of phase rearrangements. For the system under study, we find the critical dependence of the parameters such that zero equilibrium loses stability as two spatially inhomogeneous states appear in one case and a cycle in another case. With the parameter values close to the critical ones, asymptotic formulas are obtained for the regimes that branch off from the zero solution.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.