{"title":"利用机器学习对非线性薛定谔方程进行粗网格模拟","authors":"Benjamin F. Akers, Kristina O. F. Williams","doi":"10.3390/math12172784","DOIUrl":null,"url":null,"abstract":"A numerical method for evolving the nonlinear Schrödinger equation on a coarse spatial grid is developed. This trains a neural network to generate the optimal stencil weights to discretize the second derivative of solutions to the nonlinear Schrödinger equation. The neural network is embedded in a symmetric matrix to control the scheme’s eigenvalues, ensuring stability. The machine-learned method can outperform both its parent finite difference method and a Fourier spectral method. The trained scheme has the same asymptotic operation cost as its parent finite difference method after training. Unlike traditional methods, the performance depends on how close the initial data are to the training set.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-Gridded Simulation of the Nonlinear Schrödinger Equation with Machine Learning\",\"authors\":\"Benjamin F. Akers, Kristina O. F. Williams\",\"doi\":\"10.3390/math12172784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method for evolving the nonlinear Schrödinger equation on a coarse spatial grid is developed. This trains a neural network to generate the optimal stencil weights to discretize the second derivative of solutions to the nonlinear Schrödinger equation. The neural network is embedded in a symmetric matrix to control the scheme’s eigenvalues, ensuring stability. The machine-learned method can outperform both its parent finite difference method and a Fourier spectral method. The trained scheme has the same asymptotic operation cost as its parent finite difference method after training. Unlike traditional methods, the performance depends on how close the initial data are to the training set.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12172784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12172784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Coarse-Gridded Simulation of the Nonlinear Schrödinger Equation with Machine Learning
A numerical method for evolving the nonlinear Schrödinger equation on a coarse spatial grid is developed. This trains a neural network to generate the optimal stencil weights to discretize the second derivative of solutions to the nonlinear Schrödinger equation. The neural network is embedded in a symmetric matrix to control the scheme’s eigenvalues, ensuring stability. The machine-learned method can outperform both its parent finite difference method and a Fourier spectral method. The trained scheme has the same asymptotic operation cost as its parent finite difference method after training. Unlike traditional methods, the performance depends on how close the initial data are to the training set.