{"title":"基于随机微分方程建模的风力涡轮机齿轮箱油温预测","authors":"Hongsheng Su, Zonghao Ding, Xingsheng Wang","doi":"10.3390/math12172783","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of high failure rate and inconvenient maintenance of wind turbine gearboxes, this paper establishes a stochastic differential equation model that can be used to fit the change of gearbox oil temperature and adopts an iterative computational method and Markov-based modified optimization to fit the prediction sequence in order to realize the accurate prediction of gearbox oil temperature. The model divides the oil temperature change of the gearbox into two parts, internal aging and external random perturbation, adopts the approximation theorem to establish the internal aging model, and uses Brownian motion to simulate the external random perturbation. The model parameters were calculated by the Newton–Raphson iterative method based on the gearbox oil temperature monitoring data. Iterative calculations and Markov-based corrections were performed on the model prediction data. The gearbox oil temperature variations were simulated in MATLAB, and the fitting and testing errors were calculated before and after the iterations. By comparing the fitting and testing errors with the ordinary differential equations and the stochastic differential equations before iteration, the iterated model can better reflect the gear oil temperature trend and predict the oil temperature at a specific time. The accuracy of the iterated model in terms of fitting and prediction is important for the development of preventive maintenance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Wind Turbine Gearbox Oil Temperature Based on Stochastic Differential Equation Modeling\",\"authors\":\"Hongsheng Su, Zonghao Ding, Xingsheng Wang\",\"doi\":\"10.3390/math12172783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of high failure rate and inconvenient maintenance of wind turbine gearboxes, this paper establishes a stochastic differential equation model that can be used to fit the change of gearbox oil temperature and adopts an iterative computational method and Markov-based modified optimization to fit the prediction sequence in order to realize the accurate prediction of gearbox oil temperature. The model divides the oil temperature change of the gearbox into two parts, internal aging and external random perturbation, adopts the approximation theorem to establish the internal aging model, and uses Brownian motion to simulate the external random perturbation. The model parameters were calculated by the Newton–Raphson iterative method based on the gearbox oil temperature monitoring data. Iterative calculations and Markov-based corrections were performed on the model prediction data. The gearbox oil temperature variations were simulated in MATLAB, and the fitting and testing errors were calculated before and after the iterations. By comparing the fitting and testing errors with the ordinary differential equations and the stochastic differential equations before iteration, the iterated model can better reflect the gear oil temperature trend and predict the oil temperature at a specific time. The accuracy of the iterated model in terms of fitting and prediction is important for the development of preventive maintenance.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12172783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12172783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Prediction of Wind Turbine Gearbox Oil Temperature Based on Stochastic Differential Equation Modeling
Aiming at the problem of high failure rate and inconvenient maintenance of wind turbine gearboxes, this paper establishes a stochastic differential equation model that can be used to fit the change of gearbox oil temperature and adopts an iterative computational method and Markov-based modified optimization to fit the prediction sequence in order to realize the accurate prediction of gearbox oil temperature. The model divides the oil temperature change of the gearbox into two parts, internal aging and external random perturbation, adopts the approximation theorem to establish the internal aging model, and uses Brownian motion to simulate the external random perturbation. The model parameters were calculated by the Newton–Raphson iterative method based on the gearbox oil temperature monitoring data. Iterative calculations and Markov-based corrections were performed on the model prediction data. The gearbox oil temperature variations were simulated in MATLAB, and the fitting and testing errors were calculated before and after the iterations. By comparing the fitting and testing errors with the ordinary differential equations and the stochastic differential equations before iteration, the iterated model can better reflect the gear oil temperature trend and predict the oil temperature at a specific time. The accuracy of the iterated model in terms of fitting and prediction is important for the development of preventive maintenance.