环中涉及半等式和乘法广义半等式的一些方程

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-11 DOI:10.3390/math12182818
Ali Yahya Hummdi, Öznur Gölbaşı, Emine Koç Sögütcü, Nadeem ur Rehman
{"title":"环中涉及半等式和乘法广义半等式的一些方程","authors":"Ali Yahya Hummdi, Öznur Gölbaşı, Emine Koç Sögütcü, Nadeem ur Rehman","doi":"10.3390/math12182818","DOIUrl":null,"url":null,"abstract":"This paper examines the commutativity of the quotient ring F/Y by utilizing specific differential identities in a general ring F that contains a semiprime ideal Y. This study particularly focuses on the role of a multiplicative generalized semiderivation ψ, which is associated with a map θ, in determining the commutative nature of the quotient ring.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"194 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Equations in Rings Involving Semiprime Ideals and Multiplicative Generalized Semiderivations\",\"authors\":\"Ali Yahya Hummdi, Öznur Gölbaşı, Emine Koç Sögütcü, Nadeem ur Rehman\",\"doi\":\"10.3390/math12182818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the commutativity of the quotient ring F/Y by utilizing specific differential identities in a general ring F that contains a semiprime ideal Y. This study particularly focuses on the role of a multiplicative generalized semiderivation ψ, which is associated with a map θ, in determining the commutative nature of the quotient ring.\",\"PeriodicalId\":18303,\"journal\":{\"name\":\"Mathematics\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182818\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182818","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用包含一个半质理想 Y 的一般环 F 中的特定微分等式,研究了商环 F/Y 的交换性。本研究特别关注与映射 θ 相关联的乘法广义半矢量 ψ 在确定商环的交换性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Equations in Rings Involving Semiprime Ideals and Multiplicative Generalized Semiderivations
This paper examines the commutativity of the quotient ring F/Y by utilizing specific differential identities in a general ring F that contains a semiprime ideal Y. This study particularly focuses on the role of a multiplicative generalized semiderivation ψ, which is associated with a map θ, in determining the commutative nature of the quotient ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信