奥立兹类中单边哈代-利特尔伍德最大函数的加权弱式不等式的统一版本

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Erxin Zhang
{"title":"奥立兹类中单边哈代-利特尔伍德最大函数的加权弱式不等式的统一版本","authors":"Erxin Zhang","doi":"10.3390/math12182814","DOIUrl":null,"url":null,"abstract":"Let Mg+f be the one-sided Hardy–Littlewood maximal function, φ1 be a nonnegative and nondecreasing function on [0,∞), γ be a positive and nondecreasing function defined on [0,∞); let φ2 be a quasi-convex function and u,v,w be three weight functions. In this paper, we present necessary and sufficient conditions on weight functions (u,v,w) such that the inequality φ1(λ)∫{Mg+f>λ}u(x)g(x)dx≤C∫−∞+∞φ2(C|f(x)|v(x)γ(λ))w(x)g(x)dx holds. Then, we unify the weak and extra-weak-type one-sided Hardy–Littlewood maximal inequalities in the above inequality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes\",\"authors\":\"Erxin Zhang\",\"doi\":\"10.3390/math12182814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Mg+f be the one-sided Hardy–Littlewood maximal function, φ1 be a nonnegative and nondecreasing function on [0,∞), γ be a positive and nondecreasing function defined on [0,∞); let φ2 be a quasi-convex function and u,v,w be three weight functions. In this paper, we present necessary and sufficient conditions on weight functions (u,v,w) such that the inequality φ1(λ)∫{Mg+f>λ}u(x)g(x)dx≤C∫−∞+∞φ2(C|f(x)|v(x)γ(λ))w(x)g(x)dx holds. Then, we unify the weak and extra-weak-type one-sided Hardy–Littlewood maximal inequalities in the above inequality.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

设 Mg+f 为单边哈代-利特尔伍德最大函数,φ1 为定义在 [0,∞) 上的非负且非递减函数,γ 为定义在 [0,∞) 上的正且非递减函数;设φ2 为准凸函数,u,v,w 为三个权函数。本文提出了权重函数(u,v,w)的必要条件和充分条件,使得不等式φ1(λ)∫{Mg+f>λ}u(x)g(x)dx≤C∫-∞+∞φ2(C|f(x)|v(x)γ(λ))w(x)g(x)dx 成立。然后,我们把弱型和超弱型单边哈代-利特尔伍德最大不等式统一到上述不等式中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Version of Weighted Weak-Type Inequalities for the One-Sided Hardy–Littlewood Maximal Function in Orlicz Classes
Let Mg+f be the one-sided Hardy–Littlewood maximal function, φ1 be a nonnegative and nondecreasing function on [0,∞), γ be a positive and nondecreasing function defined on [0,∞); let φ2 be a quasi-convex function and u,v,w be three weight functions. In this paper, we present necessary and sufficient conditions on weight functions (u,v,w) such that the inequality φ1(λ)∫{Mg+f>λ}u(x)g(x)dx≤C∫−∞+∞φ2(C|f(x)|v(x)γ(λ))w(x)g(x)dx holds. Then, we unify the weak and extra-weak-type one-sided Hardy–Littlewood maximal inequalities in the above inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信