Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang, Gang Ma
{"title":"具有弱阿利效应延迟和竞争延迟的捕食者-猎物模型的稳定性和霍普夫分岔分析","authors":"Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang, Gang Ma","doi":"10.3390/math12182853","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay\",\"authors\":\"Yurong Dong, Hua Liu, Yumei Wei, Qibin Zhang, Gang Ma\",\"doi\":\"10.3390/math12182853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stability and Hopf Bifurcation Analysis of a Predator–Prey Model with Weak Allee Effect Delay and Competition Delay
The purpose of this paper is to study a predator–prey model with Allee effect and double time delays. This research examines the dynamics of the model, with a focus on positivity, existence, stability and Hopf bifurcations. The stability of the periodic solution and the direction of the Hopf bifurcation are elucidated by applying the normal form theory and the center manifold theorem. To validate the correctness of the theoretical analysis, numerical simulations were conducted. The results suggest that a weak Allee effect delay can promote stability within the model, transitioning it from instability to stability. Nevertheless, the competition delay induces periodic oscillations and chaotic dynamics, ultimately resulting in the population’s collapse.