{"title":"具有赫尔德系数的奇异随机 Volterra方程的路径唯一性","authors":"David J. Prömel, David Scheffels","doi":"10.1007/s40072-024-00335-y","DOIUrl":null,"url":null,"abstract":"<p>Pathwise uniqueness is established for a class of one-dimensional stochastic Volterra equations driven by Brownian motion with singular kernels and Hölder continuous diffusion coefficients. Consequently, the existence of unique strong solutions is obtained for this class of stochastic Volterra equations.</p>","PeriodicalId":48569,"journal":{"name":"Stochastics and Partial Differential Equations-Analysis and Computations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathwise uniqueness for singular stochastic Volterra equations with Hölder coefficients\",\"authors\":\"David J. Prömel, David Scheffels\",\"doi\":\"10.1007/s40072-024-00335-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pathwise uniqueness is established for a class of one-dimensional stochastic Volterra equations driven by Brownian motion with singular kernels and Hölder continuous diffusion coefficients. Consequently, the existence of unique strong solutions is obtained for this class of stochastic Volterra equations.</p>\",\"PeriodicalId\":48569,\"journal\":{\"name\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Partial Differential Equations-Analysis and Computations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40072-024-00335-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Partial Differential Equations-Analysis and Computations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40072-024-00335-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Pathwise uniqueness for singular stochastic Volterra equations with Hölder coefficients
Pathwise uniqueness is established for a class of one-dimensional stochastic Volterra equations driven by Brownian motion with singular kernels and Hölder continuous diffusion coefficients. Consequently, the existence of unique strong solutions is obtained for this class of stochastic Volterra equations.
期刊介绍:
Stochastics and Partial Differential Equations: Analysis and Computations publishes the highest quality articles presenting significantly new and important developments in the SPDE theory and applications. SPDE is an active interdisciplinary area at the crossroads of stochastic anaylsis, partial differential equations and scientific computing. Statistical physics, fluid dynamics, financial modeling, nonlinear filtering, super-processes, continuum physics and, recently, uncertainty quantification are important contributors to and major users of the theory and practice of SPDEs. The journal is promoting synergetic activities between the SPDE theory, applications, and related large scale computations. The journal also welcomes high quality articles in fields strongly connected to SPDE such as stochastic differential equations in infinite-dimensional state spaces or probabilistic approaches to solving deterministic PDEs.