{"title":"受监控克利福德+T 电路中的动态魔法转换","authors":"Mircea Bejan, Campbell McLauchlan, Benjamin Béri","doi":"10.1103/prxquantum.5.030332","DOIUrl":null,"url":null,"abstract":"The classical simulation of highly entangling quantum dynamics is conjectured to be generically hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-entanglement dynamics are phase transitions in classical simulability. Here, we study simulability transitions beyond entanglement: noting that some highly entangling dynamics (e.g., integrable systems or Clifford circuits) are easy to classically simulate, thus requiring “magic”—a subtle form of quantum resource—to achieve computational hardness, we ask how the dynamics of magic competes with measurements. We study the resulting “dynamical magic transitions” focusing on random monitored Clifford circuits doped by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi></math> gates (injecting magic). We identify dynamical “stabilizer purification”—the collapse of a superposition of stabilizer states by measurements—as the mechanism driving this transition. We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject to mutually commuting measurements. We link stabilizer purification to “magic fragmentation” wherein these measurements separate into disjoint, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi></mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>-weight blocks, and relate this to the spread of magic in the original circuit becoming arrested.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"785 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Magic Transitions in Monitored Clifford+T Circuits\",\"authors\":\"Mircea Bejan, Campbell McLauchlan, Benjamin Béri\",\"doi\":\"10.1103/prxquantum.5.030332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical simulation of highly entangling quantum dynamics is conjectured to be generically hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-entanglement dynamics are phase transitions in classical simulability. Here, we study simulability transitions beyond entanglement: noting that some highly entangling dynamics (e.g., integrable systems or Clifford circuits) are easy to classically simulate, thus requiring “magic”—a subtle form of quantum resource—to achieve computational hardness, we ask how the dynamics of magic competes with measurements. We study the resulting “dynamical magic transitions” focusing on random monitored Clifford circuits doped by <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi></math> gates (injecting magic). We identify dynamical “stabilizer purification”—the collapse of a superposition of stabilizer states by measurements—as the mechanism driving this transition. We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject to mutually commuting measurements. We link stabilizer purification to “magic fragmentation” wherein these measurements separate into disjoint, <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math>-weight blocks, and relate this to the spread of magic in the original circuit becoming arrested.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"785 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
据推测,对高度纠缠量子动力学的经典模拟一般很难。因此,最近发现的测量诱导的高纠缠与低纠缠动力学之间的转变是经典可模拟性的相变。在此,我们研究纠缠之外的可模拟性转换:我们注意到一些高度纠缠的动力学(如可积分系统或克利福德电路)易于经典模拟,因此需要 "魔法"--一种微妙的量子资源形式--来实现计算硬度,我们询问魔法动力学如何与测量竞争。我们研究了由此产生的 "动态魔法转换",重点是通过 T 门(注入魔法)掺杂的随机监控克利福德电路。我们将动态 "稳定器净化"--测量对稳定器叠加态的坍缩--确定为驱动这种转变的机制。我们发现了魔力和纠缠的转变同时发生的情况,也发现了其他在高度(体积律)纠缠阶段发生魔力和可模拟性转变的情况。在建立我们的结果时,我们使用了基于保利的计算,这是一种将动力学的量子本质提炼为受相互换向测量影响的魔态寄存器的方案。我们将稳定器净化与 "魔力碎片化 "联系起来,在 "魔力碎片化 "中,这些测量被分离成不相连的、O(1)重的块,并将此与原始电路中魔力的扩散联系起来。
Dynamical Magic Transitions in Monitored Clifford+T Circuits
The classical simulation of highly entangling quantum dynamics is conjectured to be generically hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-entanglement dynamics are phase transitions in classical simulability. Here, we study simulability transitions beyond entanglement: noting that some highly entangling dynamics (e.g., integrable systems or Clifford circuits) are easy to classically simulate, thus requiring “magic”—a subtle form of quantum resource—to achieve computational hardness, we ask how the dynamics of magic competes with measurements. We study the resulting “dynamical magic transitions” focusing on random monitored Clifford circuits doped by gates (injecting magic). We identify dynamical “stabilizer purification”—the collapse of a superposition of stabilizer states by measurements—as the mechanism driving this transition. We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject to mutually commuting measurements. We link stabilizer purification to “magic fragmentation” wherein these measurements separate into disjoint, -weight blocks, and relate this to the spread of magic in the original circuit becoming arrested.