噪声感知变异求解器:晶格规理论的耗散途径

Jesús Cobos, David F. Locher, Alejandro Bermudez, Markus Müller, Enrique Rico
{"title":"噪声感知变异求解器:晶格规理论的耗散途径","authors":"Jesús Cobos, David F. Locher, Alejandro Bermudez, Markus Müller, Enrique Rico","doi":"10.1103/prxquantum.5.030340","DOIUrl":null,"url":null,"abstract":"We propose a novel variational ansatz for the ground-state preparation of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> lattice gauge theory (LGT) in quantum simulators. It combines dissipative and unitary operations in a completely deterministic scheme with a circuit depth that does not scale with the size of the considered lattice. We find that, with very few variational parameters, the ansatz can achieve <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>&gt;</mo><mn>99</mn><mi mathvariant=\"normal\">%</mi></math> precision in energy in both the confined and deconfined phase of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> LGT. We benchmark our proposal against the unitary Hamiltonian variational ansatz showing a reduction in the required number of variational layers to achieve a target precision. After performing a finite-size scaling analysis, we show that our dissipative variational ansatz can predict accurate critical exponents without requiring a number of layers that scales with the system size, which is the standard situation for unitary ansätze. Furthermore, we investigate the performance of this variational eigensolver subject to circuit-level noise, determining variational error thresholds that fix the error rate below which it would be beneficial to increase the number of layers. In light of these quantities and for typical gate errors <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> in current quantum processors, we provide a detailed assessment of the prospects of our scheme to explore the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> LGT on near-term devices.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories\",\"authors\":\"Jesús Cobos, David F. Locher, Alejandro Bermudez, Markus Müller, Enrique Rico\",\"doi\":\"10.1103/prxquantum.5.030340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel variational ansatz for the ground-state preparation of the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mn>2</mn></msub></math> lattice gauge theory (LGT) in quantum simulators. It combines dissipative and unitary operations in a completely deterministic scheme with a circuit depth that does not scale with the size of the considered lattice. We find that, with very few variational parameters, the ansatz can achieve <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>&gt;</mo><mn>99</mn><mi mathvariant=\\\"normal\\\">%</mi></math> precision in energy in both the confined and deconfined phase of the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mn>2</mn></msub></math> LGT. We benchmark our proposal against the unitary Hamiltonian variational ansatz showing a reduction in the required number of variational layers to achieve a target precision. After performing a finite-size scaling analysis, we show that our dissipative variational ansatz can predict accurate critical exponents without requiring a number of layers that scales with the system size, which is the standard situation for unitary ansätze. Furthermore, we investigate the performance of this variational eigensolver subject to circuit-level noise, determining variational error thresholds that fix the error rate below which it would be beneficial to increase the number of layers. In light of these quantities and for typical gate errors <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi></math> in current quantum processors, we provide a detailed assessment of the prospects of our scheme to explore the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"double-struck\\\">Z</mi></mrow><mn>2</mn></msub></math> LGT on near-term devices.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为量子模拟器中 Z2 格规理论(LGT)的基态制备提出了一种新颖的变分公式。它在一个完全确定的方案中结合了耗散和单元操作,电路深度不随所考虑的晶格大小而缩放。我们发现,在 Z2 LGT 的约束和去约束阶段,只需极少的变分参数,该解析就能达到 99% 的能量精度。我们将我们的建议与单元哈密顿变分公式进行了比较,结果表明,要达到目标精度,所需的变分层数有所减少。在进行有限规模缩放分析后,我们表明我们的耗散变分公式可以预测精确的临界指数,而不需要随系统规模缩放的层数,这正是单元变分公式的标准情况。此外,我们还研究了这一变分求解器在电路级噪声下的性能,确定了变分误差阈值,以确定误差率低于该阈值时增加层数的好处。根据这些数量和当前量子处理器中的典型栅极误差 p,我们详细评估了我们的方案在近期器件上探索 Z2 LGT 的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories

Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories
We propose a novel variational ansatz for the ground-state preparation of the Z2 lattice gauge theory (LGT) in quantum simulators. It combines dissipative and unitary operations in a completely deterministic scheme with a circuit depth that does not scale with the size of the considered lattice. We find that, with very few variational parameters, the ansatz can achieve >99% precision in energy in both the confined and deconfined phase of the Z2 LGT. We benchmark our proposal against the unitary Hamiltonian variational ansatz showing a reduction in the required number of variational layers to achieve a target precision. After performing a finite-size scaling analysis, we show that our dissipative variational ansatz can predict accurate critical exponents without requiring a number of layers that scales with the system size, which is the standard situation for unitary ansätze. Furthermore, we investigate the performance of this variational eigensolver subject to circuit-level noise, determining variational error thresholds that fix the error rate below which it would be beneficial to increase the number of layers. In light of these quantities and for typical gate errors p in current quantum processors, we provide a detailed assessment of the prospects of our scheme to explore the Z2 LGT on near-term devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信