模拟量子计算:它 "有多少 "比特"?

Michael Zurel, Cihan Okay, Robert Raussendorf
{"title":"模拟量子计算:它 \"有多少 \"比特\"?","authors":"Michael Zurel, Cihan Okay, Robert Raussendorf","doi":"10.1103/prxquantum.5.030343","DOIUrl":null,"url":null,"abstract":"A recently introduced classical simulation method for universal quantum computation with magic states operates by repeated sampling from probability functions [M. Zurel <i>et al.</i> PRL 260404 (2020)]. This method is closely related to sampling algorithms based on Wigner functions, with the important distinction that Wigner functions can take negative values obstructing the sampling. Indeed, negativity in Wigner functions has been identified as a precondition for a quantum speed-up. However, in the present method of classical simulation, negativity of quasiprobability functions never arises. This model remains probabilistic for all quantum computations. In this paper, we analyze the amount of classical data that the simulation procedure must track. We find that this amount is small. Specifically, for any number <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> of magic states, the number of bits that describe the quantum system at any given time is <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>O</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Quantum Computation: How Many “Bits” for “It”?\",\"authors\":\"Michael Zurel, Cihan Okay, Robert Raussendorf\",\"doi\":\"10.1103/prxquantum.5.030343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently introduced classical simulation method for universal quantum computation with magic states operates by repeated sampling from probability functions [M. Zurel <i>et al.</i> PRL 260404 (2020)]. This method is closely related to sampling algorithms based on Wigner functions, with the important distinction that Wigner functions can take negative values obstructing the sampling. Indeed, negativity in Wigner functions has been identified as a precondition for a quantum speed-up. However, in the present method of classical simulation, negativity of quasiprobability functions never arises. This model remains probabilistic for all quantum computations. In this paper, we analyze the amount of classical data that the simulation procedure must track. We find that this amount is small. Specifically, for any number <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> of magic states, the number of bits that describe the quantum system at any given time is <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math>.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近推出的一种经典模拟方法是通过对概率函数的重复采样来实现具有神奇状态的通用量子计算[M. Zurel 等人,PRL 260404 (2020)]。这种方法与基于维格纳函数的采样算法密切相关,但有一个重要区别,即维格纳函数的负值会阻碍采样。事实上,维格纳函数的负值被认为是量子提速的先决条件。然而,在目前的经典模拟方法中,准概率函数的负值从未出现过。这个模型对所有量子计算都保持了概率性。本文分析了模拟程序必须跟踪的经典数据量。我们发现,这个数量很小。具体来说,对于任意数量的 n 个神奇状态,在任何给定时间内描述量子系统的比特数为 2n2+O(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulating Quantum Computation: How Many “Bits” for “It”?

Simulating Quantum Computation: How Many “Bits” for “It”?
A recently introduced classical simulation method for universal quantum computation with magic states operates by repeated sampling from probability functions [M. Zurel et al. PRL 260404 (2020)]. This method is closely related to sampling algorithms based on Wigner functions, with the important distinction that Wigner functions can take negative values obstructing the sampling. Indeed, negativity in Wigner functions has been identified as a precondition for a quantum speed-up. However, in the present method of classical simulation, negativity of quasiprobability functions never arises. This model remains probabilistic for all quantum computations. In this paper, we analyze the amount of classical data that the simulation procedure must track. We find that this amount is small. Specifically, for any number n of magic states, the number of bits that describe the quantum system at any given time is 2n2+O(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信