{"title":"高阶蜂窝自动机生成的对称保护拓扑相位以及通过多点奇异相关器进行检测","authors":"Jie-Yu Zhang, Meng-Yuan Li, Peng Ye","doi":"10.1103/prxquantum.5.030342","DOIUrl":null,"url":null,"abstract":"In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is <i>mixed-subsystem SPT</i> that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is <i>chaotic-subsystem SPT</i> in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call <i>multi point strange correlators</i>. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi Point Strange Correlators\",\"authors\":\"Jie-Yu Zhang, Meng-Yuan Li, Peng Ye\",\"doi\":\"10.1103/prxquantum.5.030342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is <i>mixed-subsystem SPT</i> that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is <i>chaotic-subsystem SPT</i> in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call <i>multi point strange correlators</i>. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi Point Strange Correlators
In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata that evolve over multiple time steps and generate complex patterns, which have various applications, such as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems. One example is mixed-subsystem SPT that has either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symmetries simultaneously. Another example is chaotic-subsystem SPT in which chaotic-looking symmetries are significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symmetries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected by what we call multi point strange correlators. We propose a universal procedure to design the spatial configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep connections between multi point strange correlators and the spurious topological entanglement entropy (STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases of matter with symmetries supported on a great variety of subsystems, and also provide potential useful perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.