强磁场中氢原子的积分方程法

B. P. Carter, Z. Papp
{"title":"强磁场中氢原子的积分方程法","authors":"B. P. Carter, Z. Papp","doi":"arxiv-2408.13897","DOIUrl":null,"url":null,"abstract":"The problem of a hydrogen atom in a strong magnetic field is a notorious\nexample of a quantum system that has genuinely different asymptotic behaviors\nin different directions. In the direction perpendicular to the magnetic field\nthe motion is quadratically confined, while in the direction along the field\nline the motion is a Coulomb-distorted free motion. In this work, we identify\nthe asymptotically relevant parts of the Hamiltonian and cast the problem into\na Lippmann-Schwinger form. Then, we approximate the asymptotically irrelevant\nparts by a discrete Hilbert space basis that allows an exact analytic\nevaluation of the relevant Green's operators by continued fractions. The total\nasymptotic Green's operator is calculated by a complex contour integral of\nsubsystem Green's operators. We present a sample of numerical results for a\nwide range of magnetic field strengths.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral equation approach for a hydrogen atom in a strong magnetic field\",\"authors\":\"B. P. Carter, Z. Papp\",\"doi\":\"arxiv-2408.13897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of a hydrogen atom in a strong magnetic field is a notorious\\nexample of a quantum system that has genuinely different asymptotic behaviors\\nin different directions. In the direction perpendicular to the magnetic field\\nthe motion is quadratically confined, while in the direction along the field\\nline the motion is a Coulomb-distorted free motion. In this work, we identify\\nthe asymptotically relevant parts of the Hamiltonian and cast the problem into\\na Lippmann-Schwinger form. Then, we approximate the asymptotically irrelevant\\nparts by a discrete Hilbert space basis that allows an exact analytic\\nevaluation of the relevant Green's operators by continued fractions. The total\\nasymptotic Green's operator is calculated by a complex contour integral of\\nsubsystem Green's operators. We present a sample of numerical results for a\\nwide range of magnetic field strengths.\",\"PeriodicalId\":501039,\"journal\":{\"name\":\"arXiv - PHYS - Atomic Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强磁场中的氢原子问题是一个著名的量子系统实例,它在不同方向上具有真正不同的渐近行为。在垂直于磁场的方向上,运动是二次受限的,而在沿着磁场线的方向上,运动则是库仑扭曲的自由运动。在这项研究中,我们确定了哈密顿的渐近相关部分,并将问题转化为李普曼-施温格形式。然后,我们用离散的希尔伯特空间基础来近似渐近无关的部分,这样就可以用续分数对相关的格林算子进行精确的分析评估。总的渐近格林算子由子系统格林算子的复等值积分计算得出。我们展示了一系列磁场强度下的数值结果样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral equation approach for a hydrogen atom in a strong magnetic field
The problem of a hydrogen atom in a strong magnetic field is a notorious example of a quantum system that has genuinely different asymptotic behaviors in different directions. In the direction perpendicular to the magnetic field the motion is quadratically confined, while in the direction along the field line the motion is a Coulomb-distorted free motion. In this work, we identify the asymptotically relevant parts of the Hamiltonian and cast the problem into a Lippmann-Schwinger form. Then, we approximate the asymptotically irrelevant parts by a discrete Hilbert space basis that allows an exact analytic evaluation of the relevant Green's operators by continued fractions. The total asymptotic Green's operator is calculated by a complex contour integral of subsystem Green's operators. We present a sample of numerical results for a wide range of magnetic field strengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信