{"title":"用于航空航天的高性能热塑性纳米复合材料:合成、生产和分析综述","authors":"Sukran Guney Yilmaz, Erdem Ferik, Selahattin Berat Birak, Merve Ozkutlu Demirel, Yahya Oz, Cihan Kaboglu","doi":"10.1177/07316844241272035","DOIUrl":null,"url":null,"abstract":"Thermoset polymers are cured under natural or synthetic created conditions and retain their solid form when exposed to heat. Unlike thermosets, thermoplastics melt when exposed to heat after production. Thermoplastics are preferred as raw materials because they can be easily shaped after production, have a high shelf life and are recyclable. In this regard, the prominence of high-performance engineering polymers in recent years has led to the preference of alternative polymers to thermosets. High-performance engineering thermoplastics include thermoplastics such as polyphenylene-sulfide (PPS), polyether-ether-ketone (PEEK), polyether-ketone-ketone (PEKK), polyphenylene-ether, polysulfone,polyoxadiazole, polyimide, polyether-amide, polyether-amide-imide, polynaphthalene, and polyamide-imide. These polymers exhibit application potential in aerospace, defense, automotive, marine, energy, and medical sectors. In challenging conditions such as high pressure, temperature, and corrosive environments, they possess high service temperatures, enhanced mechanical and physical properties, preferable chemical resistance as well as out-of-autoclave and rapid processing properties. In this review article, nanomaterial production methods (bottom-up and top-bottom) are mentioned. In the following sections, PPS, PEEK, and PEKK thermoplastics are explained, and carbon- and boron-based nano additives used in constructing nanocomposites are investigated. In the last section, PPS, PEKK, and PEEK polymer nanocomposites are investigated.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance thermoplastic nanocomposites for aerospace applications: A review of synthesis, production, and analysis\",\"authors\":\"Sukran Guney Yilmaz, Erdem Ferik, Selahattin Berat Birak, Merve Ozkutlu Demirel, Yahya Oz, Cihan Kaboglu\",\"doi\":\"10.1177/07316844241272035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoset polymers are cured under natural or synthetic created conditions and retain their solid form when exposed to heat. Unlike thermosets, thermoplastics melt when exposed to heat after production. Thermoplastics are preferred as raw materials because they can be easily shaped after production, have a high shelf life and are recyclable. In this regard, the prominence of high-performance engineering polymers in recent years has led to the preference of alternative polymers to thermosets. High-performance engineering thermoplastics include thermoplastics such as polyphenylene-sulfide (PPS), polyether-ether-ketone (PEEK), polyether-ketone-ketone (PEKK), polyphenylene-ether, polysulfone,polyoxadiazole, polyimide, polyether-amide, polyether-amide-imide, polynaphthalene, and polyamide-imide. These polymers exhibit application potential in aerospace, defense, automotive, marine, energy, and medical sectors. In challenging conditions such as high pressure, temperature, and corrosive environments, they possess high service temperatures, enhanced mechanical and physical properties, preferable chemical resistance as well as out-of-autoclave and rapid processing properties. In this review article, nanomaterial production methods (bottom-up and top-bottom) are mentioned. In the following sections, PPS, PEEK, and PEKK thermoplastics are explained, and carbon- and boron-based nano additives used in constructing nanocomposites are investigated. In the last section, PPS, PEKK, and PEEK polymer nanocomposites are investigated.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241272035\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241272035","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
High-performance thermoplastic nanocomposites for aerospace applications: A review of synthesis, production, and analysis
Thermoset polymers are cured under natural or synthetic created conditions and retain their solid form when exposed to heat. Unlike thermosets, thermoplastics melt when exposed to heat after production. Thermoplastics are preferred as raw materials because they can be easily shaped after production, have a high shelf life and are recyclable. In this regard, the prominence of high-performance engineering polymers in recent years has led to the preference of alternative polymers to thermosets. High-performance engineering thermoplastics include thermoplastics such as polyphenylene-sulfide (PPS), polyether-ether-ketone (PEEK), polyether-ketone-ketone (PEKK), polyphenylene-ether, polysulfone,polyoxadiazole, polyimide, polyether-amide, polyether-amide-imide, polynaphthalene, and polyamide-imide. These polymers exhibit application potential in aerospace, defense, automotive, marine, energy, and medical sectors. In challenging conditions such as high pressure, temperature, and corrosive environments, they possess high service temperatures, enhanced mechanical and physical properties, preferable chemical resistance as well as out-of-autoclave and rapid processing properties. In this review article, nanomaterial production methods (bottom-up and top-bottom) are mentioned. In the following sections, PPS, PEEK, and PEKK thermoplastics are explained, and carbon- and boron-based nano additives used in constructing nanocomposites are investigated. In the last section, PPS, PEKK, and PEEK polymer nanocomposites are investigated.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).