谱负马尔可夫加法过程的停止水平

IF 1.1 4区 数学 Q1 MATHEMATICS
M. Çağlar, C. Vardar-Acar
{"title":"谱负马尔可夫加法过程的停止水平","authors":"M. Çağlar, C. Vardar-Acar","doi":"10.1007/s40304-023-00385-z","DOIUrl":null,"url":null,"abstract":"<p>The optimal stopping problem for pricing Russian options in finance requires taking the supremum of the discounted reward function over all finite stopping times. We assume the logarithm of the asset price is a spectrally negative Markov additive process with finitely many regimes. The reward function is given by the exponential of the running supremum of the price process. Previous work on Russian optimal stopping problem suggests that the optimal stopping time would be an upcrossing time of the drawdown at a certain level for each regime. We derive explicit formulas for identifying the stopping levels and computing the corresponding value functions through a recursive algorithm. A numerical is provided for finding these stopping levels and their value functions.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"43 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stopping Levels for a Spectrally Negative Markov Additive Process\",\"authors\":\"M. Çağlar, C. Vardar-Acar\",\"doi\":\"10.1007/s40304-023-00385-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimal stopping problem for pricing Russian options in finance requires taking the supremum of the discounted reward function over all finite stopping times. We assume the logarithm of the asset price is a spectrally negative Markov additive process with finitely many regimes. The reward function is given by the exponential of the running supremum of the price process. Previous work on Russian optimal stopping problem suggests that the optimal stopping time would be an upcrossing time of the drawdown at a certain level for each regime. We derive explicit formulas for identifying the stopping levels and computing the corresponding value functions through a recursive algorithm. A numerical is provided for finding these stopping levels and their value functions.</p>\",\"PeriodicalId\":10575,\"journal\":{\"name\":\"Communications in Mathematics and Statistics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00385-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00385-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

金融学中俄罗斯期权定价的最优停止问题要求在所有有限的停止时间内取贴现报酬函数的上确值。我们假设资产价格的对数是一个光谱负马尔可夫加法过程,具有有限多个状态。奖励函数由价格过程的运行上值的指数给出。以前关于俄罗斯最优止损问题的研究表明,最优止损时间将是每个制度的缩减在一定水平上的上交叉时间。我们通过递归算法推导出明确的公式,用于确定止损水平并计算相应的价值函数。我们还提供了一个数值来查找这些停止水平及其值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stopping Levels for a Spectrally Negative Markov Additive Process

Stopping Levels for a Spectrally Negative Markov Additive Process

The optimal stopping problem for pricing Russian options in finance requires taking the supremum of the discounted reward function over all finite stopping times. We assume the logarithm of the asset price is a spectrally negative Markov additive process with finitely many regimes. The reward function is given by the exponential of the running supremum of the price process. Previous work on Russian optimal stopping problem suggests that the optimal stopping time would be an upcrossing time of the drawdown at a certain level for each regime. We derive explicit formulas for identifying the stopping levels and computing the corresponding value functions through a recursive algorithm. A numerical is provided for finding these stopping levels and their value functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics and Statistics
Communications in Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.80
自引率
0.00%
发文量
36
期刊介绍: Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信