{"title":"骨骼肌流失的分子机制及自然资源对其的预防作用","authors":"Jin Tae Kim, Dong Hyeon Jeon, Hong Jin Lee","doi":"10.1007/s10068-024-01678-x","DOIUrl":null,"url":null,"abstract":"<div><p>A skeletal muscle disorder has drawn attention due to the global aging issues. The loss of skeletal muscle mass has been suggested to be from the reduced muscle regeneration by dysfunction of muscle satellite cell/fibro-adipogenic progenitor cells and the muscle atrophy by dysfunction of mitochondria, ubiquitin–proteasome system, and autophagy. In this review, we highlighted the underlying mechanisms of skeletal muscle mass loss including Notch signaling, Wnt/β-catenin signaling, Hedgehog signaling, AMP-activated protein kinase (AMPK) signaling, and mammalian target of rapamycin (mTOR) signaling. In addition, we summarized accumulated studies of natural resources investigating their roles in ameliorating the loss of skeletal muscle mass and demonstrating the underlying mechanisms in vitro and in vivo. In conclusion, following the studies of natural resources exerting the preventive activity in muscle mass loss, the signaling-based approaches may accelerate the development of functional foods for sarcopenia prevention.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"33 15","pages":"3387 - 3400"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanism of skeletal muscle loss and its prevention by natural resources\",\"authors\":\"Jin Tae Kim, Dong Hyeon Jeon, Hong Jin Lee\",\"doi\":\"10.1007/s10068-024-01678-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A skeletal muscle disorder has drawn attention due to the global aging issues. The loss of skeletal muscle mass has been suggested to be from the reduced muscle regeneration by dysfunction of muscle satellite cell/fibro-adipogenic progenitor cells and the muscle atrophy by dysfunction of mitochondria, ubiquitin–proteasome system, and autophagy. In this review, we highlighted the underlying mechanisms of skeletal muscle mass loss including Notch signaling, Wnt/β-catenin signaling, Hedgehog signaling, AMP-activated protein kinase (AMPK) signaling, and mammalian target of rapamycin (mTOR) signaling. In addition, we summarized accumulated studies of natural resources investigating their roles in ameliorating the loss of skeletal muscle mass and demonstrating the underlying mechanisms in vitro and in vivo. In conclusion, following the studies of natural resources exerting the preventive activity in muscle mass loss, the signaling-based approaches may accelerate the development of functional foods for sarcopenia prevention.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"33 15\",\"pages\":\"3387 - 3400\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-024-01678-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01678-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Molecular mechanism of skeletal muscle loss and its prevention by natural resources
A skeletal muscle disorder has drawn attention due to the global aging issues. The loss of skeletal muscle mass has been suggested to be from the reduced muscle regeneration by dysfunction of muscle satellite cell/fibro-adipogenic progenitor cells and the muscle atrophy by dysfunction of mitochondria, ubiquitin–proteasome system, and autophagy. In this review, we highlighted the underlying mechanisms of skeletal muscle mass loss including Notch signaling, Wnt/β-catenin signaling, Hedgehog signaling, AMP-activated protein kinase (AMPK) signaling, and mammalian target of rapamycin (mTOR) signaling. In addition, we summarized accumulated studies of natural resources investigating their roles in ameliorating the loss of skeletal muscle mass and demonstrating the underlying mechanisms in vitro and in vivo. In conclusion, following the studies of natural resources exerting the preventive activity in muscle mass loss, the signaling-based approaches may accelerate the development of functional foods for sarcopenia prevention.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.