Rui-feng Zhao, Biao-long Su, Zhi-wen Yu, Kai-lin Wang, Jian-gang Lu
{"title":"基于故障元件原理的有源配电网络混合保护方案","authors":"Rui-feng Zhao, Biao-long Su, Zhi-wen Yu, Kai-lin Wang, Jian-gang Lu","doi":"10.1007/s42835-024-02015-2","DOIUrl":null,"url":null,"abstract":"<p>The integration of distributed generation (DG) into active distribution networks poses significant challenges to traditional protection schemes due to altered power flow directions and the impact on short-circuit fault currents. This paper proposes a novel multi-layered protection scheme based on fault current components to address these challenges. The scheme incorporates pilot protection, DG active islanding protection, and traditional three-stage overcurrent protection, leveraging the amplitude ratios and phase differences of positive and negative sequence current components. A compensation mechanism is introduced to adjust the protection setting, enhancing the sensitivity and reliability of the protection criteria. Through MATLAB/Simulink simulations on a 10 kV active distribution network model, the proposed scheme demonstrates robust performance under various fault conditions, providing comprehensive and reliable protection. This scheme advances the state-of-the-art by integrating multiple fault characteristics and optimizing sensitivity, offering a new approach to enhance the protection of future active distribution networks.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Protection Scheme for Active Distribution Networks Based on Fault Components Principle\",\"authors\":\"Rui-feng Zhao, Biao-long Su, Zhi-wen Yu, Kai-lin Wang, Jian-gang Lu\",\"doi\":\"10.1007/s42835-024-02015-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of distributed generation (DG) into active distribution networks poses significant challenges to traditional protection schemes due to altered power flow directions and the impact on short-circuit fault currents. This paper proposes a novel multi-layered protection scheme based on fault current components to address these challenges. The scheme incorporates pilot protection, DG active islanding protection, and traditional three-stage overcurrent protection, leveraging the amplitude ratios and phase differences of positive and negative sequence current components. A compensation mechanism is introduced to adjust the protection setting, enhancing the sensitivity and reliability of the protection criteria. Through MATLAB/Simulink simulations on a 10 kV active distribution network model, the proposed scheme demonstrates robust performance under various fault conditions, providing comprehensive and reliable protection. This scheme advances the state-of-the-art by integrating multiple fault characteristics and optimizing sensitivity, offering a new approach to enhance the protection of future active distribution networks.</p>\",\"PeriodicalId\":15577,\"journal\":{\"name\":\"Journal of Electrical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42835-024-02015-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42835-024-02015-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Hybrid Protection Scheme for Active Distribution Networks Based on Fault Components Principle
The integration of distributed generation (DG) into active distribution networks poses significant challenges to traditional protection schemes due to altered power flow directions and the impact on short-circuit fault currents. This paper proposes a novel multi-layered protection scheme based on fault current components to address these challenges. The scheme incorporates pilot protection, DG active islanding protection, and traditional three-stage overcurrent protection, leveraging the amplitude ratios and phase differences of positive and negative sequence current components. A compensation mechanism is introduced to adjust the protection setting, enhancing the sensitivity and reliability of the protection criteria. Through MATLAB/Simulink simulations on a 10 kV active distribution network model, the proposed scheme demonstrates robust performance under various fault conditions, providing comprehensive and reliable protection. This scheme advances the state-of-the-art by integrating multiple fault characteristics and optimizing sensitivity, offering a new approach to enhance the protection of future active distribution networks.
期刊介绍:
ournal of Electrical Engineering and Technology (JEET), which is the official publication of the Korean Institute of Electrical Engineers (KIEE) being published bimonthly, released the first issue in March 2006.The journal is open to submission from scholars and experts in the wide areas of electrical engineering technologies.
The scope of the journal includes all issues in the field of Electrical Engineering and Technology. Included are techniques for electrical power engineering, electrical machinery and energy conversion systems, electrophysics and applications, information and controls.