相互作用电子液体中的相关性:多体统计和超均匀性

Haina Wang, Rhine Samajdar, Salvatore Torquato
{"title":"相互作用电子液体中的相关性:多体统计和超均匀性","authors":"Haina Wang, Rhine Samajdar, Salvatore Torquato","doi":"arxiv-2409.01381","DOIUrl":null,"url":null,"abstract":"Disordered hyperuniform many-body systems are exotic states of matter with\nnovel optical, transport, and mechanical properties. These systems are\ncharacterized by an anomalous suppression of large-scale density fluctuations\ncompared to typical liquids, i.e., the structure factor obeys the scaling\nrelation $S(k)\\sim \\mathcal{B}k^\\alpha$ with $\\mathcal{B}, \\alpha>0$ in the\nlimit $k$\\,$\\rightarrow$\\,$ 0$. Ground-state $d$-dimensional free fermionic\ngases, which are fundamental models for many metals and semiconductors, are key\nexamples of \\textit{quantum} disordered hyperuniform states with important\nconnections to random matrix theory. However, the effects of electron-electron\ninteractions as well as the polarization of the electron liquid on\nhyperuniformity have not been explored thus far. In this work, we\nsystematically address these questions by deriving the analytical small-$k$\nbehaviors (and associatedly, $\\alpha$ and $\\mathcal{B}$) of the total and\nspin-resolved structure factors of quasi-1D, 2D, and 3D electron liquids for\nvarying polarizations and interaction parameters. We validate that these\nequilibrium disordered ground states are hyperuniform, as dictated by the\nfluctuation-compressibility relation. Interestingly, free fermions, partially\npolarized interacting fermions, and fully polarized interacting fermions are\ncharacterized by different values of the small-$k$ scaling exponent $\\alpha$\nand coefficient $\\mathcal{B}$. In particular, partially polarized fermionic\nliquids exhibit a unique form of \\textit{multihyperuniformity}, in which the\nnet configuration exhibits a stronger form of hyperuniformity (i.e., larger\n$\\alpha$) than each individual spin component.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlations in interacting electron liquids: Many-body statistics and hyperuniformity\",\"authors\":\"Haina Wang, Rhine Samajdar, Salvatore Torquato\",\"doi\":\"arxiv-2409.01381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disordered hyperuniform many-body systems are exotic states of matter with\\nnovel optical, transport, and mechanical properties. These systems are\\ncharacterized by an anomalous suppression of large-scale density fluctuations\\ncompared to typical liquids, i.e., the structure factor obeys the scaling\\nrelation $S(k)\\\\sim \\\\mathcal{B}k^\\\\alpha$ with $\\\\mathcal{B}, \\\\alpha>0$ in the\\nlimit $k$\\\\,$\\\\rightarrow$\\\\,$ 0$. Ground-state $d$-dimensional free fermionic\\ngases, which are fundamental models for many metals and semiconductors, are key\\nexamples of \\\\textit{quantum} disordered hyperuniform states with important\\nconnections to random matrix theory. However, the effects of electron-electron\\ninteractions as well as the polarization of the electron liquid on\\nhyperuniformity have not been explored thus far. In this work, we\\nsystematically address these questions by deriving the analytical small-$k$\\nbehaviors (and associatedly, $\\\\alpha$ and $\\\\mathcal{B}$) of the total and\\nspin-resolved structure factors of quasi-1D, 2D, and 3D electron liquids for\\nvarying polarizations and interaction parameters. We validate that these\\nequilibrium disordered ground states are hyperuniform, as dictated by the\\nfluctuation-compressibility relation. Interestingly, free fermions, partially\\npolarized interacting fermions, and fully polarized interacting fermions are\\ncharacterized by different values of the small-$k$ scaling exponent $\\\\alpha$\\nand coefficient $\\\\mathcal{B}$. In particular, partially polarized fermionic\\nliquids exhibit a unique form of \\\\textit{multihyperuniformity}, in which the\\nnet configuration exhibits a stronger form of hyperuniformity (i.e., larger\\n$\\\\alpha$) than each individual spin component.\",\"PeriodicalId\":501521,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Gases\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无序超均匀多体系统是一种奇异的物质状态,具有新颖的光学、传输和机械特性。与典型的液体相比,这些系统的特征是对大尺度密度波动的异常抑制,即结构因子服从$S(k)\sim \mathcal{B}k^\alpha$ 与$\mathcal{B}, \alpha>0$的缩放关系,在极限值为$k$\, $\rightarrow$\, $0$。基态 $d$ 维自由费米子气体是许多金属和半导体的基本模型,是无序超均匀态的(textit{quantum})关键实例,与随机矩阵理论有着重要的联系。然而,迄今为止,电子-电子相互作用以及电子液体极化对超均匀性的影响尚未得到探讨。在这项工作中,我们通过推导不同极化和相互作用参数下准一维、二维和三维电子液体的总结构因子和自旋分辨结构因子的分析性小$k$行为(以及相关的$\alpha$和$mathcal{B}$),系统地解决了这些问题。我们验证了这些平衡无序基态是超均匀的,这是由波动-压缩关系决定的。有趣的是,自由费米子、部分极化的相互作用费米子和完全极化的相互作用费米子的小-$k$缩放指数$\alpha$和系数$mathcal{B}$值各不相同。特别是,部分极化费米子液体表现出一种独特的 "多超均匀性"(textit{multihyperuniformity})形式,其中et构型比每个单独的自旋分量表现出更强的超均匀性(即更大的$\alpha$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlations in interacting electron liquids: Many-body statistics and hyperuniformity
Disordered hyperuniform many-body systems are exotic states of matter with novel optical, transport, and mechanical properties. These systems are characterized by an anomalous suppression of large-scale density fluctuations compared to typical liquids, i.e., the structure factor obeys the scaling relation $S(k)\sim \mathcal{B}k^\alpha$ with $\mathcal{B}, \alpha>0$ in the limit $k$\,$\rightarrow$\,$ 0$. Ground-state $d$-dimensional free fermionic gases, which are fundamental models for many metals and semiconductors, are key examples of \textit{quantum} disordered hyperuniform states with important connections to random matrix theory. However, the effects of electron-electron interactions as well as the polarization of the electron liquid on hyperuniformity have not been explored thus far. In this work, we systematically address these questions by deriving the analytical small-$k$ behaviors (and associatedly, $\alpha$ and $\mathcal{B}$) of the total and spin-resolved structure factors of quasi-1D, 2D, and 3D electron liquids for varying polarizations and interaction parameters. We validate that these equilibrium disordered ground states are hyperuniform, as dictated by the fluctuation-compressibility relation. Interestingly, free fermions, partially polarized interacting fermions, and fully polarized interacting fermions are characterized by different values of the small-$k$ scaling exponent $\alpha$ and coefficient $\mathcal{B}$. In particular, partially polarized fermionic liquids exhibit a unique form of \textit{multihyperuniformity}, in which the net configuration exhibits a stronger form of hyperuniformity (i.e., larger $\alpha$) than each individual spin component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信