用费米子光学超晶格模拟化学

Fotios Gkritsis, Daniel Dux, Jin Zhang, Naman Jain, Christian Gogolin, Philipp M. Preiss
{"title":"用费米子光学超晶格模拟化学","authors":"Fotios Gkritsis, Daniel Dux, Jin Zhang, Naman Jain, Christian Gogolin, Philipp M. Preiss","doi":"arxiv-2409.05663","DOIUrl":null,"url":null,"abstract":"We show that quantum number preserving Ans\\\"atze for variational optimization\nin quantum chemistry find an elegant mapping to ultracold fermions in optical\nsuperlattices. Using native Hubbard dynamics, trial ground states for arbitrary\nmolecular Hamiltonians can be prepared and their molecular energies measured in\nthe lattice. The scheme requires local control over interactions and chemical\npotentials and global control over tunneling dynamics, but foregoes the need\nfor optical tweezers, shuttling operations, or long-range interactions. We\ndescribe a complete compilation pipeline from the molecular Hamiltonian to the\nsequence of lattice operations, thus providing a concrete link between quantum\nsimulation and chemistry. Our work enables the application of recent quantum\nalgorithmic techniques, such as Double Factorization and quantum Tailored\nCoupled Cluster, to present-day fermionic optical lattice systems with\nsignificant improvements in the required number of experimental repetitions. We\nprovide detailed quantum resource estimates for small non-trivial hardware\nexperiments.","PeriodicalId":501521,"journal":{"name":"arXiv - PHYS - Quantum Gases","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating Chemistry with Fermionic Optical Superlattices\",\"authors\":\"Fotios Gkritsis, Daniel Dux, Jin Zhang, Naman Jain, Christian Gogolin, Philipp M. Preiss\",\"doi\":\"arxiv-2409.05663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that quantum number preserving Ans\\\\\\\"atze for variational optimization\\nin quantum chemistry find an elegant mapping to ultracold fermions in optical\\nsuperlattices. Using native Hubbard dynamics, trial ground states for arbitrary\\nmolecular Hamiltonians can be prepared and their molecular energies measured in\\nthe lattice. The scheme requires local control over interactions and chemical\\npotentials and global control over tunneling dynamics, but foregoes the need\\nfor optical tweezers, shuttling operations, or long-range interactions. We\\ndescribe a complete compilation pipeline from the molecular Hamiltonian to the\\nsequence of lattice operations, thus providing a concrete link between quantum\\nsimulation and chemistry. Our work enables the application of recent quantum\\nalgorithmic techniques, such as Double Factorization and quantum Tailored\\nCoupled Cluster, to present-day fermionic optical lattice systems with\\nsignificant improvements in the required number of experimental repetitions. We\\nprovide detailed quantum resource estimates for small non-trivial hardware\\nexperiments.\",\"PeriodicalId\":501521,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Gases\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,量子化学中用于变异优化的量子数保留安塞找到了光学超晶格中超冷费米子的优雅映射。利用本机哈伯德动力学,可以制备任意分子哈密顿的试验基态,并在晶格中测量它们的分子能量。该方案需要对相互作用和化学势进行局部控制,对隧道动力学进行全局控制,但不需要光学镊子、穿梭操作或长程相互作用。我们描述了从分子哈密顿到这一系列晶格操作的完整编译流水线,从而在量子模拟和化学之间建立了具体的联系。我们的工作使最新的量子算法技术(如双因式分解和量子定制耦合簇)得以应用于当今的费米子光晶格系统,并显著改善了所需的实验重复次数。我们为小型非三维硬件实验提供了详细的量子资源估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating Chemistry with Fermionic Optical Superlattices
We show that quantum number preserving Ans\"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices. Using native Hubbard dynamics, trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice. The scheme requires local control over interactions and chemical potentials and global control over tunneling dynamics, but foregoes the need for optical tweezers, shuttling operations, or long-range interactions. We describe a complete compilation pipeline from the molecular Hamiltonian to the sequence of lattice operations, thus providing a concrete link between quantum simulation and chemistry. Our work enables the application of recent quantum algorithmic techniques, such as Double Factorization and quantum Tailored Coupled Cluster, to present-day fermionic optical lattice systems with significant improvements in the required number of experimental repetitions. We provide detailed quantum resource estimates for small non-trivial hardware experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信