Matthew D Mann, Min Wang, Josephine C Ferreon, Michael P Suess, Antrix Jain, Anna Malovannaya, Bruce D Pascal, Raj Kumar, Dean P Edwards, PATRICK R GRIFFIN
{"title":"结构蛋白质组学确定了黄体酮受体的顺序启动机制","authors":"Matthew D Mann, Min Wang, Josephine C Ferreon, Michael P Suess, Antrix Jain, Anna Malovannaya, Bruce D Pascal, Raj Kumar, Dean P Edwards, PATRICK R GRIFFIN","doi":"10.1101/2024.09.06.611729","DOIUrl":null,"url":null,"abstract":"The progesterone receptor (PR) is a steroid-responsive nuclear receptor, expressed as two isoforms: PR-A and PR-B. The isoforms display distinct expression patterns and biological actions in reproductive target tissues and disruption of PR-A:PR-B signaling is associated with breast cancer development potentially by altering interactions with oncogenic co-regulatory protein (CoRs). However, the molecular details of isoform-specific PR-CoR interactions that influence progesterone signaling remain poorly understood. We employed structural mass spectrometry in this study to investigate the sequential binding mechanism of purified full-length PR and full-length CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes with target DNA. Our findings reveal selective CoR NR-box binding by PR and novel interaction surfaces between PR, SRC3, and p300, which change during complex assembly. This provides a structural model for a sequential priming mechanism that activates PR. Comparisons of PR bound to progesterone agonist versus antagonist challenges the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and elucidate the mechanisms behind the interactions of these proteins, both in active and inactive conformations.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural proteomics defines a sequential priming mechanism for the progesterone receptor\",\"authors\":\"Matthew D Mann, Min Wang, Josephine C Ferreon, Michael P Suess, Antrix Jain, Anna Malovannaya, Bruce D Pascal, Raj Kumar, Dean P Edwards, PATRICK R GRIFFIN\",\"doi\":\"10.1101/2024.09.06.611729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The progesterone receptor (PR) is a steroid-responsive nuclear receptor, expressed as two isoforms: PR-A and PR-B. The isoforms display distinct expression patterns and biological actions in reproductive target tissues and disruption of PR-A:PR-B signaling is associated with breast cancer development potentially by altering interactions with oncogenic co-regulatory protein (CoRs). However, the molecular details of isoform-specific PR-CoR interactions that influence progesterone signaling remain poorly understood. We employed structural mass spectrometry in this study to investigate the sequential binding mechanism of purified full-length PR and full-length CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes with target DNA. Our findings reveal selective CoR NR-box binding by PR and novel interaction surfaces between PR, SRC3, and p300, which change during complex assembly. This provides a structural model for a sequential priming mechanism that activates PR. Comparisons of PR bound to progesterone agonist versus antagonist challenges the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and elucidate the mechanisms behind the interactions of these proteins, both in active and inactive conformations.\",\"PeriodicalId\":501147,\"journal\":{\"name\":\"bioRxiv - Biochemistry\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural proteomics defines a sequential priming mechanism for the progesterone receptor
The progesterone receptor (PR) is a steroid-responsive nuclear receptor, expressed as two isoforms: PR-A and PR-B. The isoforms display distinct expression patterns and biological actions in reproductive target tissues and disruption of PR-A:PR-B signaling is associated with breast cancer development potentially by altering interactions with oncogenic co-regulatory protein (CoRs). However, the molecular details of isoform-specific PR-CoR interactions that influence progesterone signaling remain poorly understood. We employed structural mass spectrometry in this study to investigate the sequential binding mechanism of purified full-length PR and full-length CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes with target DNA. Our findings reveal selective CoR NR-box binding by PR and novel interaction surfaces between PR, SRC3, and p300, which change during complex assembly. This provides a structural model for a sequential priming mechanism that activates PR. Comparisons of PR bound to progesterone agonist versus antagonist challenges the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and elucidate the mechanisms behind the interactions of these proteins, both in active and inactive conformations.