全息边界利夫希兹场论

Chong-Sun Chu, Ignacio Garrido Gonzalez, Himanshu Parihar
{"title":"全息边界利夫希兹场论","authors":"Chong-Sun Chu, Ignacio Garrido Gonzalez, Himanshu Parihar","doi":"arxiv-2409.06667","DOIUrl":null,"url":null,"abstract":"We propose a holographic duality for the boundary Lifshitz field theory\n(BLFT). Similar to holographic BCFT, holographic BLFT can be consistently\ndefined by imposing either a Neumann boundary condition (NBC) or a conformal\nboundary condition (CBC) on the end of the world (EOW) brane. We propose\n$g$-functions and derive $g$-theorem for these two types of holographic BLFT.\nOn the field theory side, we consider BLFT whose path integral is prescribed to\ninclude also paths bouncing off the boundary. The entanglement entropy for an\ninterval for the Lifshitz invariant ground state is computed in the saddle\npoint approximation, and is found to agree precisely with the holographic\nresult in both limits when the interval is very close or very far away from the\nboundary.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holography for Boundary Lifshitz Field Theory\",\"authors\":\"Chong-Sun Chu, Ignacio Garrido Gonzalez, Himanshu Parihar\",\"doi\":\"arxiv-2409.06667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a holographic duality for the boundary Lifshitz field theory\\n(BLFT). Similar to holographic BCFT, holographic BLFT can be consistently\\ndefined by imposing either a Neumann boundary condition (NBC) or a conformal\\nboundary condition (CBC) on the end of the world (EOW) brane. We propose\\n$g$-functions and derive $g$-theorem for these two types of holographic BLFT.\\nOn the field theory side, we consider BLFT whose path integral is prescribed to\\ninclude also paths bouncing off the boundary. The entanglement entropy for an\\ninterval for the Lifshitz invariant ground state is computed in the saddle\\npoint approximation, and is found to agree precisely with the holographic\\nresult in both limits when the interval is very close or very far away from the\\nboundary.\",\"PeriodicalId\":501339,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Theory\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了边界李夫希兹场论(BLFT)的全息对偶性。与全息边界场论类似,全息边界场论也可以通过在世界的尽头(EOW)布雷上施加诺伊曼边界条件(NBC)或共形边界条件(CBC)而得到一致的定义。在场论方面,我们考虑了路径积分被规定为也包括从边界反弹的路径的BLFT。在鞍点近似中,我们计算了利夫希茨不变基态区间的纠缠熵,发现当区间离边界非常近或非常远时,在两个极限中,纠缠熵都与全息结果精确吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holography for Boundary Lifshitz Field Theory
We propose a holographic duality for the boundary Lifshitz field theory (BLFT). Similar to holographic BCFT, holographic BLFT can be consistently defined by imposing either a Neumann boundary condition (NBC) or a conformal boundary condition (CBC) on the end of the world (EOW) brane. We propose $g$-functions and derive $g$-theorem for these two types of holographic BLFT. On the field theory side, we consider BLFT whose path integral is prescribed to include also paths bouncing off the boundary. The entanglement entropy for an interval for the Lifshitz invariant ground state is computed in the saddle point approximation, and is found to agree precisely with the holographic result in both limits when the interval is very close or very far away from the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信